
 

 

Speaker Recognition Algorithm to Facilitate Lab 

Assistance 
 

 

 

 

 

 

 

 

 

By Balsam Zakaria Ishaq Khojah 
 

 

 

 

 

A thesis submitted for the requirements of the degree of Master of Computer 

Science 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY 

KING ABDULAZIZ UNIVERSITY 

JEDDAH – SAUDI ARABIA 

Safar 1437H- December 2015G 



 

 

 

 
 بسم الله الرحمن الرحيم

 

 

 

 

 
 
 

ُ  ﴿ ىق ال تعال ا لنََهْتَدَيَ لوَْلََ أنَْ هَدَانَا اللَّه َ الهذَي هَدَانَا لهََذَا وَمَاكُنه ﴾الحَمْدُ لَِلّه  

 سورة الأعراف آية 43
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Speaker Recognition Algorithm to Facilitate Lab 

Assistance 
 
 

 

 

 

 

 

 

 

 

By Balsam Zakaria Ishaq Khojah 
 
 
 

 

 

 

 

A thesis submitted for the requirements of the degree of Master of Computer 

Science 

 

 

 

 

 

Supervised By 

Dr. Wadee Saleh Alhalabi 
 

 

 

 

 

 

FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY 

KING ABDULAZIZ UNIVERSITY 

JEDDAH – SAUDI ARABIA 

Safar 1437H- December 2015G 



 

 

 

تحديد المتحدث التي تستخدم للمساعدة خوارزمية  
في المعامل والتعليم عن بعد   

 

 

 

 

 

 

 

 

 

 بلسم زكريا إسحاق خوجة
 
 

 
 

 

 

 بحث مقدم لنيل درجة الماجستير في علوم الحاسبات
 

 

 

 

 

 

 إشراف:
الحلبي صالح وديع د.  

 

 

 

 

 كلية الحاسبات وتقنية المعلومات

 جامعة الملك عبدالعزيز

ة العربة السعوديةالمملك –جدة   
هـ 1437صفر –م  2015 ديسمبر  



 

 

Speaker Recognition Algorithm to Facilitate Lab 

Assistance 
 

 

 

By 

 Balsam Zakaria Ishaq Khojah 
 

 

 

 

 

 

 

This thesis has been approved and accepted in partial 

fulfillment of the requirements for the degree of 

Master of Computer Science 
 

 

EXAMINATION COMMITTEE 

 

 Name Rank Field Signature 

Internal 

Examiner 

Dr. Fadi Fouad 

Foz 
Professor Computer Science 

 

External 

Examiner 

Dr. Ali Hussein 
Morfeq 

Assistant 

Professor 

Electrical Engineering 

and Computer 

Engineering 

 

Advisor 
Dr. Wadee Saleh  

Alhalabi 

Assistant 

Professor 
Computer Science 

 

 

KING ABDULAZIZ UNIVERSITY 

Safar 1437H- December 2015G 

 



 

 

 خوارزمية تحديد المتحدث التي تستخدم للمساعدة
في المعامل والتعليم عن بعد   

 

 

 

 

 

 

 إعداد
 بلسم زكريا إسحاق خوجة

 

 

 

 

 
 

تمت الموافقة على قبول هذه الرسالة استكمالا لمتطلبات درجة الماجستير في علوم 
 الحاسبات

 
 

 

 

 لجنة المناقشة و الحكم على الرسالة
 

ة العلميةالمرتب التخصص التوقيع   الاسم 

 عضو داخلي فوزفؤاد  يد. فاد أستاذ لوم حاسباتع 

 
الهندسة الكهربائية 

الحاسباتهندسة و  
مرفق حسين د. علي أستاذ مساعد  عضو خارجي 

الحلبيصالح د. وديع  أستاذ مساعد علوم حاسبات   مشرف رئيس 
 

 جامعة الملك عبدالعزيز

هـ 1437 صفر –م  2015 ديسمبر  

 



i 

 

 

 
 

 

 

 

 

 

 
 

Dedicated to 

 

 

Most important person in my life, my mother 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



ii 

 

 

 

 

ACKNOWLEDGEMENTS 
 

 

 

In the Name of Allah, the Most Merciful, the Most Compassionate, all praise be to 

Allah, the Lord of the Worlds, and prayers and peace be upon Mohamed, His servant 

and messenger.  

First and foremost, I must acknowledge my limitless thanks to Allah, the Ever-

Magnificent, the Ever-Thankful, for His help and blessing. I am sure that this work 

would have never been completed without His guidance. 

I am grateful to the people who worked hard with me from the beginning to the 

completion of this present research, particularly my supervisor, Dr. Wadee Alhalabi, 

your efforts, motivation, encouragement, patience and extraordinary support were the 

light that directed my way to reach my dream. Working with you was my honor and I 

could not be able to finish this thesis without your professional guidance.  

My great father, thank you for believing in me in every step of my life and especially 

in the last years of my education. Without your advice, I would not be here. 

My precious mother, your warm heart,  unconditional  love and prayers are priceless. I 

could not ask for more. 

My husband, you shared with me the ups and downs in my work with care, hope and 

understanding. My academic life won’t be successful without your company. 

My sisters and brothers, thank you for your cooperation until I reached thesis 

completion with pride.  

My children, Lujain, Abdullah, and Hibah, you are a blessing from Allah that always 

motivate me to go beyond my expectations. 



iii 

 

Speaker Recognition Algorithm to Facilitate Lab Assistance 

 

Balsam Zakaria Ishaq Khojah 

 

 

Abstract 

 
 

The increasing need of human-machine interaction in our daily life leads to rapid 

advances and developments. Voice biometry is a powerful measurement technology, 

which can provide rich information useful in a multitude of circumstances. Words are 

not the only understandable information that can be gathered from speech. Listeners can 

know gender, age, health situation, emotion state, and speaker identity. The speech 

processing field is concerned with understanding all these aspects, depending on the 

application, a multitude of factors being considered. Automatic Speaker Recognition 

(ASR) in particular is the ability of a program or a device to identify from its utterance 

who is speaking. ASR is usually divided into Speaker Verification (SV) and Speaker 

Identification (SI). SV applications relate to the security area because it’s scope is 

verifying if the unknown speaker belongs to the system. On the other hand, SI is the 

process of identifying an unknown speaker from groups of enrolled speakers. SI is 

generally used for audio conferencing and similar applications.  

Our study is focused on proposing a speaker identification system (SIS) that identifies 

effectively all registered speakers based on their speech. SIS is composed of two main 

modules: feature extraction and feature matching. Mel Frequency Cepstrum Coefficients 

(MFCC’s) is used for extracting features from speech signal. For feature matching, we 

have applied four common ASR algorithms: Vector Quantization (VQ), Gaussian 

Mixture Models (GMM), Artificial Neural Networks (ANN), and Decision Trees (DT). 

The speaker database used in SIS is composed of 120 speakers. The procedure followed 

for the proposed SIS is to train then test different sizes of speaker databases by 

extracting their features. First MFCCs is applied and then, in the training and testing  

phases, VQ, GMM, ANN, and DT algorithms are used. Our system tries to improve the 

identification rate by fusing the identification results of the four algorithms by majority 

decision method. Identification rate results show that fusion method gives better results 

than VQ, ANN, and DT algorithms when applied separately. Compared with other 

methods, GMM provides the best identification rate and the lowest rate of speaker 

misidentification. 

When evaluating performance, the most accurate procedure for identifying true speakers 

and rejecting imposters is the fusion method. VQ algorithm is the second best in 

accuracy. Fusion method have accuracy rate of 99% for 100 speakers and 96% for 25 

and 50 speakers. The proposed SIS in this study proved its ability to identify a text-

independent closed set of speaker groups effectively.   
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Introduction 

 

 

1.1 Introduction 

Communicating with other people around the world for different purposes is a daily 

necessity in our lives. Due the rich information that can provide, speech is the most 

powerful form of communication. The information provided by speech is vast and 

include gender, attitude, emotion, health situation and identity of a speaker. These 

aspects can be extracted using speech processing techniques. Speech processing is a 

diverse field with many applications and Speaker Recognition (SR) area is one of these 

applications that has a great research attention and rapid advancements with the increase 

of human-machine interactions.  

Automatic Speaker Recognition (ASR) is the ability to extract, characterize and 

recognize the information about speaker identity [1]. Speaker recognition is usually 

divided into Speaker Identification (SI) and Speaker Verification (SV). Both SI and SV 

need a stored speaker database as a reference model for pre known speakers. In speaker 

verification there is an identity claim and the SV job is to verify the claimed identity 

through binary decision for acceptance or rejection [2] [3] [4]. The main applications of 

SV are in the security area. In case of speaker identification there is no identity claim, 
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and the SI job is to identify the unknown speaker from groups of known speakers [2] [3] 

[4]. Speaker identification system is divided into closed-set and open-set system [2]. 

Closed-set identification means the unknown speaker must have pre-recorded data in the 

speaker database and the result should give the best match between the unknown speaker 

and one of enrolled speakers. Open-set identification means that unknown speaker 

doesn’t find a match from enrolled speakers and a possible result is that the unknown 

speaker is an imposter and we have to add the category “unregistered” to the system [4].  

According to speech modalities, SV and SI can be text-dependent or text-independent. 

Text-dependent means that in order to perform the identification a fixed text must be 

spoken whereas in text-independent, the speaker can speak freely. Although text-

independent adds more flexibility to the system, it reduces the accuracy and is more 

vulnerable to mistakes. 

Any speaker identification system should pass three steps: feature extraction, training, 

and testing. There are several algorithms can be used for identification procedure. Our 

research is proposing a closed-set speaker identification system. Text-independent is the 

speech modality used here. 

1.2 Motivation 

Suppose that there is a group of scientists from all over the world that need to exchange 

their last experiments in an audio conference. When a scientist starts to talk, all the 

listeners know his name, specialty, and a brief biography of his scientific work. Another 

example is if there is a group of students in a class, their teacher is in another location 

and he needs to take the attendance or know who is participating during the class. In this 

case, there is a need for a program or a special device that works as a lab assistant, 
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analyzing the speech signal, identifying who is speaking, and producing the result to the 

teacher.  

1.3 Problem Statement 

With the great existence of educational technologies that replaces the face-to-face 

learning such as e-learning, several tools are needed to upgrade the educational process. 

Some types of e-learning methods include online tests or presentations and there is a 

need for an attendance system that lets the teacher know who is presenting or attending.  

Our university and many Saudi Arabia universities have a separated section for female 

students. The teacher may present in another location and the only way for 

communication is the audio communication. When the student wants to participate to a 

set of classes, her voice is the only biometric available to the teacher. Having a program 

or a device that acts as a speaker identification system can assist the teacher in identify 

who is speaking. Taking the attendance also is a task that can be performed with a 

speaker identification system. 

1.4 Thesis Objectives 

This research aims to propose a speaker identification system that identifies a closed-set 

of speakers. The main goal is to use well-known speaker identification algorithms for 

training and identification purposes and upgrade the identification results so that the 

proposed system can be efficiently used for speaker identification applications such as 

lab assistant. 
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1.5 Research Methodology 

To achieve thesis objectives the following steps are performed: 

1. Study the general architecture for building a speaker identification system and 

choose the most suitable techniques that can be followed in this study. 

2. Search for convenient speaker corpora that can be used in speech researches.  

3. Organize the speaker audio files by separating them into train and test folders and 

label the speaker folder by an identification number. 

4. Study Mel Frequency Cepstrum Coeffients as feature extraction method. 

5. Study vector quantization, Gaussian Mixture Models, Artificial Neural Networks, 

and Decision Trees as four algorithms to be applied. 

6. Write the feature extraction part and speaker identification algorithms part as an 

executable functions in Matlab. 

7. Build the system by assembling the code parts needed for feature extraction, 

training, and testing. 

8. Test the program system on the speaker databases collected for this study to see if 

any changes or modification needed. 

9. Extract features from speaker speech signals to be ready for training. 

10. Train all speakers by the four SI algorithms to build a reference model for each 

enrolled speaker in the system. 

11. Test all speakers by the four SI algorithms to do the identification part. 

12. Compare the identification results between the four SI algorithms. 

13. Modify the identification results by fusion method. 

14. Evaluate the SI algorithms and fusion method to measure system performance. 



6 

 

1.6 Thesis Organization 

The thesis is organized into six chapters. Chapter 2 provides a literature review about 

speech processing and production, speaker recognition concepts, background of speaker 

recognition and its applications. In addition, chapter 2 focuses on the basic structure of 

speaker identification system and its general modules. Chapter 3 discusses the 

methodology in details followed in this study. In chapter 4, all the experiments and 

results findings are illustrated. A detailed discussion to analyze results in chapter 5. 

Chapter 6 concludes the work, with a special emphasis on results and limitations. Also, 

some directions for future work are suggested. 
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Chapter II 

 

 

 

 

Literature Review 

 

 

 

 

2.1 Speech Processing 

Among various ways of human communications like speech, body language, textual 

language, and pictorial language, speech is a powerful source for communicating due to 

the rich information it contains. Speech is a complicated signal produced as a result of 

several transformations occurring at several different levels: semantic, linguistic, 

articulatory, and acoustic [5]. As speech signal is a carrying message of diverse 

information, speech processing field has many different applications depending on the 

kind of information we are interested in. Speech processing is the extraction of the 

needed information from a speech signal to be digitalized and processed by the computer 

[6]. Figure 2.1 shows that speech processing is a diverse. Analysis, recognition, and 

coding are the main fields of research in speech processing [7].  
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Figure 2.1 Speech Processing Taxonomy 

Recognition field in particular is the most area that has been studied for several decades. 

From figure 2.2 as mentioned in [8], recognition system is divided into three 

subsystems: Speech, Speaker and Language recognition systems and their results speech 

text, language, and speaker identity respectively. As in this thesis, we are focusing on 

speaker recognition field, we will discuss in detail the speaker recognition concepts and 

principles.  

 

Figure 2.2 Recognition Field’s Parts and Their Outputs 
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2.2 Speech Production 

Speech has a rich dimension character because the speech signal carries a message 

information in its waveforms. Words, gender, emotion, health situation, attitude, and 

identity are various character dimensions in speech signal [7]. Therefore, speech signal 

is a powerful biometric that can be used as a voiceprint in certain applications. Physical 

anatomy and speak behavior are different between humans and no two individuals have 

an identical voice [2, 5]. The sound producing organs (like vocal tract length, larynx 

shape, and other parts) and the mannerisms of speaking (like accent, pronunciation, 

rhythm, and tone) make up the specific characteristics for each speaker. Speech is the 

result of a complex procedure happening in the speaker’s respiratory system [9]. Figure 

2.3 shows the elements that contribute to produce the voice [10].  The human speech 

production can be divided into three main groups: lungs, larynx and the vocal tract [11]. 

 

Figure 2.3 Respiratory System Involved in Speech Production 
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2.2.1 Lungs 

From the speech production point of view, lungs are the power source that supplies 

energy to the rest of the respiratory system. Breathing is the process of inhalation and 

exhalation that are rhythmically repeated. However, when the speaker talks, the normal 

breathing is overridden until the end of a sentence or phrase time. The muscles around 

the rib cage control the little air taken and released during speaking.  

2.2.2 Larynx 

Larynx or “voice box” has two important parts for voice production: the vocal folds and 

the glottis. Vocal folds create unvoiced sounds when they are open or vibrate to produce 

voiced sounds. The quick open and close of the airflow exit by vocal folds is known as 

the Bernoulli’s Principle in the glottis, which is explained in [5]. 

2.2.3 Vocal Tract 

The term vocal tract refers to the organs above the larynx that are responsible for voice 

production. They are the pharyngeal, oral, and nasal cavities and the velum. The length 

and shape of the vocal tract is the main source for extracting different speech features [2, 

9]. From the spectral shape we can estimate the vocal tract shape because when the 

acoustic wave passes through the vocal tract, its spectrum is altered by the formants of 

the vocal tract [6]. 

2.2.4 The Human Vocal Mechanism 

The human vocal mechanism needs to be excited by an excitation source. The excitation 

can be phonation, whispering, frication, compression, vibration, or a combination of 

these [6]. The excitation is generated when the airflow comes from the lungs and goes 
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into the vocal cords through the trachea. The shape of the glottis is manipulated during 

speech production that causes an irregular airflow called the glottal source [12]. Speech 

sounds is classified into voiced, unvoiced or mixed excitation sounds [10]. Voiced 

sounds (characterized by periodicity and high energy) cause the vocal cords to vibrate. 

Unvoiced sounds are produced with no vibration, like white noise. Mixed sounds happen 

when there is a constriction in the vocal tract besides the vibration from the vocal cords. 

2.3 Speech Recognition and Speaker Recognition 

The goal of speech recognition system is to recognize what are the spoken words, while 

speaker recognition system aims to recognize who is the speaker with no need to 

understand what is being said [13] and this is our concern in this study.  

2.4 Speaker Recognition Principles 

The main goal of speaking is to deliver an understandable message via words. In 

addition, many characteristics can be known from part of speech, such as language, 

emotions, gender, and identity of speaker. [14] defines speaker recognition as the 

identification of a speaker from his/her speech features. To build a speaker recognition 

system we have to automate the speech waveform by using some measurements that are 

capable of identifying who is speaking. The main goal of the automatic speaker 

recognition is to extract, characterize and recognize the information about speaker 

identity [13]. Speaker recognition area itself is usually divided into speaker 

identification and speaker verification systems. Some researches added speaker 

segmentation and clustering [4]. The author of Fundamentals of Speaker Recognition 

book [15] divided the six speaker recognition branches into two groups: simple and 
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compound. Speaker verification, speaker identification, and speaker classification are 

the simple group. The compound group is represented by speaker segmentation, speaker 

detection, and speaker tracking. The data needed in these systems is categorized into 

text-dependent and text-independent methods. The following sections will explain some 

of these principles in details. 

2.4.1 Speaker Verification  

The most popular branch in speaker recognition is speaker verification because it has a 

useful contribution in security and access control. Speaker verification is the process of 

verifying whether the person who claims to be has the same speaker identity with the 

one already enrolled in the system [7]. It can be considered as true/false binary decision 

because it is a one-to-one comparison between the claimed speaker (X) and the 

preregistered speaker (Sc) as depicted in figure 2.4 (a) from [5]. The decision of 

accepting or rejecting the claimed identity should be chosen carefully to avoid type-I and 

type-II errors [2]. Type-I error or False Rejection (FR) occurs when the verification 

system reject a speaker who is really registered in the system. Type-II error or False 

Acceptance (FA) occurs when the verification system accepts an imposter as a true 

speaker. Most of commercial speaker recognition applications rely on verification for 

security purposes like bank services and communication control access. 

2.4.2 Speaker Identification 

Speaker identification is more complicated than speaker verification due to the need of 

comparing the whole group of preregistered speakers’ voices with the input speaker. So, 

speaker identification is the process of finding the identity of an unknown speaker (X) 

by comparing his/her voice with voices of a group of (N) registered speakers in the 
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database (S1,S2,…,SN) as shown in figure 2.4 (b) [5] [7]. This system can be divided 

into closed-set and open-set system. Closed-set means that the unknown input speaker 

must be one of the enrolled speakers that are already stored in the database of the 

system. Open-set means that the unknown input speaker may or may not be from the 

preregistered speakers in the system and this will add the option “unknown” to the 

results [7] [2] [4]. 

 

Figure 2.4 (a) Speaker Verification (b) Speaker Identification 

2.4.3 Text-Dependent vs. Text-Independent Systems 

Depending on the way of training/testing the spoken text of speakers, speaker 

recognition speech modalities are divided into text-dependent and text-independent [2] 

[4] [16]. In text-dependent systems, the spoken text is previously known in both training 

and testing phases, where in text-independent systems the speaker is allowed to speak 

freely. System relies on text-independent model should be intelligent to figure out the 

distinguishing speech characteristics of vocal sounds that belong to speakers 

participating in that system [2]. On the other hand, the text-dependent system needs 

specific phrases to be spoken (like card number, passwords etc.) [5] which leads to 
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better speaker recognition results. Even if the text-independent system does not know 

the spoken words or phrases, it provides flexibility in speaking and there is no need for 

co-operation from speakers. 

2.5 Background of Speaker Recognition  

In the early 1960s, at Bell labs, Lawrence Kersta developed a spectrographic voice 

identification called voiceprint analysis or visible speech and this is considered a major 

step in automatic speaker identification [4] [17] [7]. Since the mid-1980s, there has been 

a great concern in speaker recognition discipline in industry, national laboratories, and 

universities. The famous labs and institutions that have researched and designed several 

generations of speaker-recognition systems are AT&T (and its derivatives); Bolt, 

Beranek, and Newman; the Dalle Molle Institute for Perceptual Artificial Intelligence 

(Switzerland); ITT; Massachusetts Institute of Technology Lincoln Labs; National Tsing 

Hua University (Taiwan); Nagoya University (Japan); Nippon Telegraph and Telephone 

(Japan); Rensselaer Polytechnic Institute; Rutgers University; and Texas Instruments 

(TI) [6]. In [6], the selected chronology of speaker-recognition progress has been shown 

in a table. At the date when the book was published, the author of Fundamentals of 

Speaker Recognition [15] estimated that in speaker recognition area, there are more than 

3500 research papers. With the assistance of human listeners, in the 1950s, an early 

research had been done by analyzing speaker speech in order to find voices 

distinguishing personal characteristics [18] [19]. With the rising of communication 

networks, the need of speaker identification is an important aspect [18]. The early works 

in speaker recognition chose text-dependent analysis to simplify the identification [20]. 

In [21] and [22], an automatic statistical comparison of speakers using a text-dependent 
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approach was done by analyzing a population of 10 speakers uttering several unique 

words. However, using text-dependent in speaker identification is not practical but it 

may be more useful in speaker verification systems.  

From that time until now, speaker recognition research has developed rapidly. The need 

for voice biometric in commercial and industrial technology has increased for the unique 

characteristics of speech signal. Speaker recognition is the only biometric that can be 

tested as it transfers over long distances and this make it more valuable with the growing 

complexity of cellular telephones [15]. It is easily collected even without speaker 

knowledge by existing infrastructure,  and can’t be stolen, lost, or forgotten [5] . Several 

parametric and non-parametric classifier approaches are used for speaker recognition 

like Gaussian Mixture Models (GMM) [23], Hidden Markov Models (HMM) [24], 

Vector Quantization (VQ) [25], Support Vector Machine (SVM) [26], Artificial Neural 

Networks (ANN) [27], and Decision Trees (DT) [28]. Depending on several factors, 

some of pattern matching models proved high performance among others. In this study, 

we are choosing the most dominant approaches that have a high identification rates in 

text-independent speaker identification field and we perform a comparison between 

them.  

2.6 Applications 

Speaker recognition technologies are used in wide range of applications. Here we are 

mentioning some examples of most popular applications that use speaker recognition 

technology [5] [2] [4] [15]: 

 Security :  

o Transaction authentication. 
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o Facility or computer access control. 

o Monitoring or Surveillance. 

o Telephone voice authentication for long distance calling or banking access. 

o Credit card validation or Personal Identification Number (PIN) entry. 

o Confidential information Forensic purposes. 

o National border control to monitor the movements of individuals in and out 

of the country. 

 Personalization:  

o Intelligent answering machines (personalized dialog systems) 

o Voice command and control. 

o Voice dialing in hands-free devices. 

o Biometric Login to telephone aided shopping systems Information and 

Reservation Services. 

o Telephone-Banking/Booking. 

o Information Retrieval. 

o Personalizes the content of an entertainment source (like interactive game 

play). 

 Audio Indexing:  

o Build an indexing speaker database. 

o Automatic speaker labeling of recorded meetings for speaker-dependent 

audio indexing. 

 Speaker Tracking:  

o Attendance systems. 
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o Tele-conference speaker identity especially when participants don’t know 

each other or there are many of them.  

o Free and paid sites meetings. 

o Proctorless Oral Testing. 

2.7 Basic Structure of Speaker Identification System (SIS) 

Any Speaker Identification System (SIS) has two basic modules: feature extraction and 

feature matching (pattern matching) [29] [2] [7] [4]. Feature extraction is the process of 

extracting set of features from a speech signal that represent a specific speaker. Feature 

matching is the actual procedure of recognition, which finds the best match between the 

extracted features of unknown input voice signal and the set of predefined speakers 

stored in database of the system. 

The speaker identification process has two phases: enrollment phase (training) and 

identification phase (testing) [5] [30] [7]. In the training phase, speakers enroll into the 

system by collecting their voices to build a reference model for each speaker then store 

the models in a speaker database. In the testing phase, to make a decision of speaker 

identity, a test voice of unknown speaker is entered to the system and compared with all 

the reference models registered during training phase. The comparison can be done by 

probability density estimation like in GMM model or by measuring the distance like in 

VQ model [30] [31] [29] .  

Both training and testing phases should start with  feature extraction module to extract 

the speaker dependent features from the speech signal and that’s why in some works, the 

processes are divided into three processes: feature extraction, training, and testing [2] 



19 

 

[29]. In SIS, the main components of training and testing phases is shown in the block 

diagram from [2] in figure 2.5. 

 

Figure 2.5 Block Diagram of a SIS 

2.7.1 Feature extraction 

Feature extraction or front-end processing aims to convert the speech waveform to some 

type of parametric representation for further analysis and processing in order to produce 

the speaker discriminative features.  

The speech signal characteristics are stationary in short period (between 5 and 100 

msec). However, these characteristics start to change to reflect speaker-specific 

information when there is enough period of time (1/5 sec or more) [9]. Therefore,  the 

speech signal is a slowly time varying signal and, to characterize the speech signal we 

use the most common way: short-term spectral analysis [32]. Short-term spectral 

analysis carries the speech in frequency domain with short segments of speech through a 
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sequence of analysis, as depicted in figure 2.6 [7] [9] and explained in detail in the 

following subsections: 

 

Figure 2.6 Short Term Spectral Analysis 

2.7.1.1 Signal Pre-Processing  

Before extracting feature vectors from the speech signal, a pre-processing procedure 

should be done. When the speaker speaks by the microphone, the continuous speech 

signal is converted into discrete domain. Then, segmentation is done on the speech 

signal to get overlapped frames to obtain quasi-stationary units of speech. A pre-

emphasis filter is applied to each frame to enhance the speech by lifting the high 

frequency spectral components of speech. Now, the speech signal is ready for the feature 

extraction subsystem. 

2.7.1.2 Mel-Frequency Cepstral Coefficients (MFCCs) 

Mel-Frequency Cepstral Coefficients (MFCCs) is the most common feature extraction 

technique used for speaker identification. The technique of computing MFCC is based 

on the short-term analysis, and from each segmented frame a MFCC vector is computed 
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[5]. Identification process is mainly affected by feature extraction step for effective 

modeling. In this study we chose MFCCs for feature extraction for the following reasons 

[33] [5] [34] [31]: 

 Based on the known variation of the human ear’s critical bandwidths with 

frequency because filters spaced linearly at low frequencies and logarithmically 

at high frequencies have been used to capture the phonetically important 

characteristics of speech. 

 Easy to extract and measure because its features occur frequently and naturally in 

speech. 

 It is not affected by ambient noise. 

 It is used as a standard acoustic feature for speaker recognition systems. 

 Has the ability to detect speech characteristics even in low frequency regions. 

The MFCCs processor performs the following processes as illustrated in the block 

diagram of figure 2.7 from [5]: 

 

Figure 2.7 Block Diagram of MFCCs Processor 
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1. Framing 

Framing means partitioning a continuous speech signal into adjacent number of 

segments or frames, as depicted in figure 2.6. Overlapping frames with 30% to 50% are 

done to avoid losing any information [34]. 

2. Windowing 

To minimize the discontinuities in the signal due to framing, windowing is applied at the 

beginning and end of each frame [29]. This is done by multiplying each frame with a 

window function w(n) of length N, where N is the length of the frame [35]. Several 

window functions can be used. Typically, Hamming window is used because it has 

accurate spectral estimation for its frequency response [9]. Hamming window function 

offers the bell shaped weighting function with no zero at the edges of the window [36] 

[37]: 

𝑤(𝑛) = 0.54 − 0.46 cos(2𝜋𝑛 𝑁 − 1)     , 𝑤ℎ𝑒𝑟𝑒     0 ≤ 𝑛 ≤ 𝑁 − 1     ⁄  (2.1) 

If we define the signal before windowing as 𝑥(𝑛), the result of windowing will be the 

signal 𝑦(𝑛) where: 

𝑦(𝑛) = 𝑥(𝑛)𝑤(𝑛)                           , 𝑤ℎ𝑒𝑟𝑒     0 ≤ 𝑛 ≤ 𝑁 − 1   (2.2) 

3. Fast Fourier Transform (FFT) 

The aim of this step is to convert each frame in time domain to frequency domain to 

obtain the magnitude frequency response from each frame [29]. Fast Fourier Transform 

(FFT) is a name given to fast algorithms to compute the Discrete Fourier Transform 

(DFT) [38]. The FFT algorithm reduces the time complexity when calculating DFT from 

𝑂(𝑛2) to 𝑂(𝑛 log 𝑛) [39]. FFT is defined on the set of N samples {𝑥𝑛}, as follow [5]: 
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𝑋𝑛 =  ∑ 𝑥𝑘

𝑁−1

𝑘=0

 𝑒−2𝜋𝑗𝑘𝑛 𝑁⁄                    , 𝑛 = 0,1,2, … , 𝑁 − 1                  (2.3) 

The resulting sequence {𝑥𝑛} is interpreted as follows: 

Zero frequency:  𝑓 = 0                          , 𝑤ℎ𝑒𝑛 𝑛 = 0                                      (2.4) 

Positive frequency:  0 < 𝑓 < 𝐹𝑠        , 𝑤ℎ𝑒𝑛 1 ≤ 𝑛 ≤ 𝑁 2 ⁄ − 1             (2.5) 

Negative frequency: −𝐹𝑠 2⁄ < 𝑓 < 0 , 𝑤ℎ𝑒𝑛 𝑁 2⁄ + 1 ≤ 𝑛 ≤ 𝑁 − 1     (2.6) 

𝐹𝑠 denotes the sampling frequency. The result after this step will give a spectrum. 

4. Mel-Frequency Wrapping 

The goal of this important step is to convert the frequency spectrum to Mel spectrum. 

The signal now is in actual frequency, 𝑓, measured in Hz. Because the human ear 

frequency perception is non-linear, we need to convert it into Mel-frequency by “Mel-

scale” [40] . To compute the “Mel” from given frequency “f”, the following formula is 

used: 

𝑚𝑒𝑙(𝑓) = 2595 ∗ log10(1 + 𝑓 700)⁄    , 𝑤ℎ𝑒𝑟𝑒 𝑓 𝑖𝑠 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑛 𝐻𝑧 (2.7) 

To simulate the human perception, a filter bank is built with bandwidth given by the Mel 

scale and pass the magnitudes of spectra through bank filters to produce the Mel-

frequency spectrum [15]. The filter banks are a set of triangular windows spaced 

uniformly on the Mel scale as shown as an example in figure 2.8 from [9]. This Mel-

frequency wrapping step keeps only the part of useful information [29]. 
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Figure 2.8 Mel-Warped Filter Bank with 20 Frequency Bands 

5. Cepstrum 

To get the result that is called Mel Frequency Cepstrum Coefficients (MFCC), the final 

step is converting the log spectrum back into time domain. To obtain the Cepstrum, first 

a logarithmic power spectrum is calculated to be the new analysis window, and then, an 

inverse FFT is performed to get a signal in time domain [5]. Therefore, cepstrum is 

defined as the inverse Fourier transformation of the logarithm of the magnitude of the 

Fourier transformation [41] and it is denoted mathematically as: 

𝑐(𝑛) = 𝑖𝑓𝑓𝑡(log|𝑓𝑓𝑡(𝑠(𝑛))|) (2.8) 

Discrete Cosine Transform (DCT) is used to convert the Mel spectrum and their 

logarithm into time domain. The MFCCs is calculated using this equation [5]: 

�̃�𝑛 = ∑(log �̃�𝑛

𝐾

𝑘=1

) cos [𝑛 (𝑘 −
1

2
)

𝜋

𝐾
] , n = 1,2, … , K (2.9) 
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2.7.2 Pattern Matching 

The pattern matching module resembles (in its role) the brain of a human when it 

registers the voices characteristics of each speaker. In the testing phase, the pattern 

matching identifies a certain speaker by comparing the unknown voice with the set of 

preregistered and stored voices. The identification procedure is actually done in this 

module, where a proper classification algorithm is used to get the likelihood score for 

each speaker.  

Feature extraction is applied on a speaker's utterances to produce the feature vectors that 

are used to train the speaker model. This is called the enrollment phase. The result of 

this phase is creating the enrolled speaker database. Testing phase starts when an 

unknown speaker enters the system and needs to be identified as one of the speaker 

database. This is done by choosing the best matching model. There are two main classes 

of pattern matching algorithms: non-parametric (template) models and parametric 

(stochastic) models [6]. Non-parametric models, as appears from the name, has no 

parametric assumptions and it needs more data to figure out the distribution and get the 

optimal solution [42]. Some of the common non-parametric models are discussed here 

are (VQ), (ANN), and (DT). Parametric models need parameters to build their structure 

and these parameters are adjusted to fit the distributed data. These approaches have 

faster computation times than non-parametric models [2]. GMM is a common example 

for a parametric model.  

2.7.2.1 Vector Quantization (VQ) 

To apply an example of template or a non-parametric model, vector quantization 

algorithm is chosen to be tested for speaker identification. VQ is one of the most 



26 

 

effective and widely used in pattern matching techniques for automatic person 

identification systems [36] [43]. VQ can be defined as a lossy data compression method 

that chooses (from a large vector space) a finite set of feature vectors represented in 

clusters. Each cluster has a center called “centroid” that is the mean value of all data 

belonging to the same cluster. The whole set of centroids is called “codebook”. A 

distortion measure is required in VQ to do the matching between the input vector and its 

centroid in the codebook. The index of the centroid  becomes the new value of the input 

vector, which has the smallest distortion in the codebook [31].  

2.7.2.1.1 Linde, Buzo, and Gray (LBG) algorithm 

To generate the codebook used for each speaker modeling, the Linde, Buzo, and Gray 

(LBG) algorithm is employed as follows  [44]: 

1. Initialization:  

Is the design stage M=1. The N vectors available in training are calculated to 

produce the mean value as the initializing centroid or codevector of the training 

vectors 𝐶1(0) and it is given by:  

𝐶1(0) =
1

𝑁
 ∑  𝑥𝑛

𝑁

𝑛=1

 (2.10) 

where 𝑥𝑛 is the nth vector in the training.                       
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2. Splitting:  

Now, each codevector in the codebook is split into two with a splitting parameter 𝜖, 

where the new codebook 𝐶𝑀+1 is given by: 

 𝐶𝑀+1 = (1 + 𝜖)𝐶𝑀(𝑘)                         (2.11) 

𝐶𝑀+1(2𝑀−1 + 𝑘) = (1 − 𝜖)𝐶𝑀(𝑘) (2.12) 

 where 𝑘 = 1,2, … , 2𝑀+1 , and 𝜖 < 1 . The value of the M is incremented by 1.  

3. Optimization:  

The optimization process has two steps: 

 Partitioning: each codevector is assigned to 𝐶𝑀(𝑘), which minimizes the 

distortion ‖𝑥𝑛 − 𝐶𝑀(𝑘)‖ , where ‖ . ‖ is the norm. 

 Updating: each codebook entry is updated by calculating the mean of the training 

vectors belonging to a cluster, reducing the quantization error in each of the 

clusters. 

The optimization process is repeated until the average distortion within the cluster is 

below a predefined threshold. 

4. Steps 2 and 3 are repeated until the number of codevectors is converged. 

To explain the LBG algorithm in another way, the following flowchart of LBG in figure 

2.9 from [45] is used. The LBG algorithm goal is to cluster a set of M codevectors. In 

the figure 2.9 of the flowchart “Cluster vectors”, the algorithm assigns each training 

vector to a cluster associated with the closest codeword by the nearest-neighbor search 

procedure. “Find centroids” updates the centroid at each iteration. “Compute D 
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(distortion)” performs the summation for the distances of all training vectors to 

determine whether the procedure has converged. 

 

Figure 2.9 Flowchart of LBG Algorithm Implementation  

2.7.2.1.2 Euclidean Distance Computation 

Euclidian distance (ED) is a way to measure the VQ-distortion. The VQ-distortion is the 

distance from a vector to the closest codeword of a codebook [5]. ED is given as  [46]: 

𝐸𝐷 = √(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2     (2.13) 

where (𝑥, 𝑦) represents coordinates of trained speaker, (𝑥1, 𝑦1) is coordinates of 

unknown speaker. The ED is used during the feature matching phase in order to measure 

the similarity between two speakers. Vector quantization is done on the unknown 

speaker and the VQ distortion is computed for all the speakers stored in the codebook 
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and for the unknown input speaker. The unknown speaker is identified with the smallest 

distortion. 

2.7.2.2 Gaussian Mixture Model (GMM) 

The GMM is a type of parametric model that, in this study, is also chosen to be tested 

for speaker identification. GMM uses only a unique Gaussian Distribution Matrix to 

represent all the speakers in the system [47]. To estimate the parameters of the GMM 

model, Maximum Likelihood (ML) estimation is used. Expectation Maximization 

Algorithm is obtained iteratively to estimate the ML parameters [29].  

The probability of speech signal features for a particular speaker model  is modeled by 

a Gaussian mixture density that is the weighted sum of M component densities given by 

the following equation [23]: 

𝑝(�⃗�|) = ∑ 𝑝𝑖𝑏𝑖(�⃗�)

𝑀

𝑖=1

 (2.14) 

where �⃗� is a random vector of D-dimension,  is the speaker model, 𝑝𝑖 are the mixture 

weights with the constraint ∑ 𝑝𝑖 = 1𝑀
𝑖=1 , 𝑏𝑖(𝑥) are the density components, and each 

density component is a D-variate-Gaussian distribution, so the Gaussian pdf of a feature 

vector for i
th

 state is given by [48]: 

 bi(x⃗⃗) =
1

(2π)
D
2 |i|

1
2⁄

exp (−
1

2
(�⃗� −𝜇𝑖⃗⃗⃗⃗ )′𝑖

−1(�⃗� −𝜇𝑖⃗⃗⃗⃗ )) (2.15) 

As appears from (2.14)  bi(x⃗⃗) is formed by the mean vector �⃗�𝑖 and the covariance 

matrix 𝑖, D is the dimension of the vector. 
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The parameters needed for a complete Gaussian mixture density are the mean vectors, 

covariance matrices and mixture weights that are available from all component densities. 

Each speaker model  has a GMM that is used for speaker identification and is 

represented by the notation: 

 = {𝑝𝑖, �⃗�𝑖,i}    , 𝑖 = 1,2, … , 𝑀 (2.16) 

Figure 2.10 from [23] shows a depiction of an M component Gaussian mixture density 

where the parameters are shown. 

 

Figure 2.10 Gaussian Mixture Density of M Component  

2.7.2.2.1 Maximum Likelihood (ML) Parameter Estimation 

To find the GMM parameters we need a good estimation to obtain an optimum model 

that best match the distribution of training feature vectors representing each speaker [47] 

[23] [48] . ML estimation is used to find the parameters that maximize the likelihood of 

GMM.  

For a sequence of training vectors  𝑥 = (�⃗�1, �⃗�2, … , �⃗�𝑡) , the GMM likelihood can be 

written as: 
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𝑝(𝑋|) = ∏ 𝑝(�⃗�𝑡|)

𝑇

𝑡=1

 (2.17) 

But direct maximization likelihood of GMM is not possible because the expression of 

(2.17) is a nonlinear function.  Expectation Maximization (EM) algorithm is the solution 

to estimate the parameters iteratively until convergence. 

2.7.2.2.2 Expectation Maximization (EM) Algorithm 

The idea of EM algorithm to estimate the parameters is shown in the following 

flowchart of figure 2.11. The algorithm starts with the initial model  to estimate the 

new model 1. The new model 1 becomes the initial model and the process is repeated 

until some convergence threshold is reached. The idea is to refine the GMM parameters 

to monotonically increase the likelihood of the estimated model. 
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Figure 2.11 Flowchart of Expectation Maximization Algorithm 

On each iteration, the EM algorithm computes the mean vector, weights, and variance 

by following re-estimation formulas [23]: 

Mixture weights: 

�⃗�𝑖 =
1

𝑇
 ∑ 𝑝(𝑖|�⃗�𝑡, )

𝑇

𝑡=1

 (2.18) 

Means: 

 �⃗̅�𝑖 =
∑ 𝑝(𝑖|�⃗�𝑡 , )�⃗�𝑡

𝑇
𝑡=1

∑ 𝑝(𝑖|�⃗�𝑡 ,)𝑇
𝑡=1

 (2.19) 
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Variance: 

  �̅�𝑖
2 =

∑ 𝑝(𝑖|�⃗⃗⃗�𝑡,)𝑥𝑡
2𝑇

𝑡=1

∑ 𝑝(𝑖|�⃗⃗⃗�𝑡,)𝑇
𝑡=1

− �̅�𝑖
2

 (2.20) 

Selecting M of the mixture and a good parameters initialization are two main factors that 

affect training speaker model. 

The posteriori probability for acoustic class 𝑖 is given by: 

      𝑝(𝑖|�⃗�𝑡 ,) =
𝑝

𝑖
𝑏𝑖(�⃗�𝑡)

∑ 𝑝
𝑘
𝑏𝑘(�⃗�𝑡)

𝑀
𝑘=1

 (2.21) 

The decision is taken after all the models GMM for each speaker are estimated. If we 

have a group of S speakers 𝑆 = {1,2, … , 𝑆} and each represented by GMM 1,2, … , 𝑆, 

the goal is to find the model with maximum likelihood a posteriori for observation 

sequence. The estimated identity of the speaker will be in the form: 

�̂� = arg max1≤𝑘≤𝑆 ∑ log 𝑝(�̅�𝑘|𝑘)

𝑇

𝑡=1

 (2.22) 

where 𝑝(�⃗�𝑘|𝑘) represents the Gaussian mixture density given by the equation (2.14). 

2.7.2.3 Artificial Neural Network (ANN) 

ANN can be defined as a system of interconnected nodes “neurons” which exchange 

information between each other. Links between neurons are weighted with some 

numeric values to make the network able for learning. Each neuron consists of a 

processing element with synaptic input connections and a single output. The neuron 

output is given by an activation function o = f() . There are different kinds of 
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activation functions and sigmoid function is one of the most used activation functions 

for training data. Figure 2.12 shows the neuron model structure as explained in [49].   

 

Figure 2.12 Neuron Model Structure 

2.7.2.3.1 Multilayer Perceptron Network 

The neural network is designed using Multilayer Perceptron Network (MLP). MLP is a 

feed forward artificial neural network used in supervised learning [50] . It is composed 

of multiple layers of nodes that are fully connected with nodes of next layer. Each link 

between nodes has an initial weight. MLP has the following layers: input layer, one or 

more hidden layer, and output layer as shown from [51] in figure 2.13. Some activation 

function is used by nodes in hidden layer and output layer. Back propagation (BP) 

algorithm is a widely used supervised learning algorithm for multilayer feed forward 

neural network. BP is used for training the nodes in MLP network. The BP works 

according to error-correction learning rule. Because BP is a supervised learning 

algorithm, input and target output vectors are provided for training. Then, the difference 

between actual outputs and target outputs are computed for more changes until reaching 

desired results.  
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Figure 2.13 Model of Multilayer Perceptron Neural Networks 

The general methodology to compute error and update the results in BP consists of two 

passes: forward pass and a backward pass [52]. In the forward pass, the input vector is 

applied to the nodes in network to be propagated layer by layer and synaptic weights are 

all fixed to produce set of outputs. Nodes of output layer calculate the difference 

between actual output results and the desired ones. The result of the difference is 

considered as error value. In the backward pass the error signal is propagated backward 

through the network and the synaptic weights in links between nodes are adjusted 

according to the error-correction rule [50] [52] [53]. This is done for each input sample 

of all speakers need to be enrolled in the system. This is implemented as follows [49]: 

 Input vector 𝑋𝑝 is applied to the input units where: 

𝑋𝑝 = (𝑥𝑝1, 𝑥𝑝2, … , 𝑥𝑝𝑁)𝑡   (2.23) 

 Then the net input values is calculated to the hidden layer units: 

𝑛𝑒𝑡𝑝𝑗
ℎ = ∑ 𝑤𝑗𝑖

ℎ

𝑁

𝑖=1

𝑥𝑝𝑖 + 𝜃𝑗
ℎ   (2.24) 

where:       
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o 𝑛𝑒𝑡𝑝𝑗
ℎ  is the net input to hidden layer, 

o 𝑤𝑗𝑖
ℎ is the weight in the connection from  𝑖𝑡ℎ input unit, 

o 𝜃𝑗
ℎ is the bias term, 

o  and “h” refers to quantities on the hidden layer. 

 Calculate the outputs from the hidden layer: 

𝑖𝑝𝑗 =  𝑓𝑗
ℎ(𝑛𝑒𝑡𝑝𝑗

ℎ ) (2.25) 

where 𝑖𝑝𝑗 is the output from hidden layer and 𝑓𝑗
ℎ is the activation function.     

 Now move to the output layer and calculate the net-input values to each units:    

𝑛𝑒𝑡𝑝𝑘
𝑜 = ∑ 𝑤𝑘𝑗

𝑜

𝐿

𝑗=1

 𝑖𝑝𝑗 + 𝜃𝑗
𝑜 (2.26) 

where:       

o 𝑛𝑒𝑡𝑝𝑗
𝑜  is the net input to output layer, 

o 𝑤𝑗𝑖
𝑜 is the weight in the connection from  𝑗𝑡ℎ hidden unit, 

o 𝜃𝑗
𝑜 is the bias term, 

o  and “o” refers to quantities on the hidden layer. 

 Calculate the outputs: 

𝑂𝑝𝑘 = 𝑓𝑘
𝑜(𝑛𝑒𝑡𝑝𝑘

𝑜 ) (2.27) 

where 𝑂𝑝𝑘 is the output from output layer and 𝑓𝑘
𝑜 is the activation function.     

 Now we can calculate the error terms for the output units: 

𝛿𝑝𝑘
𝑜 = (𝑦𝑝𝑘 − 𝑂𝑝𝑘)𝑓𝑗

𝑜′(𝑛𝑒𝑡𝑝𝑘
𝑜 ) (2.28) 
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where 𝛿𝑝𝑘
𝑜 is the error at each output unit. 

𝛿𝑝𝑘
𝑜 = 𝑦𝑝𝑘 − 𝑜𝑝𝑘 (2.29) 

where 𝑦𝑝𝑘 is the desired error and 𝑜𝑝𝑘 is the actual error. 

 Then we calculate the error terms for the hidden units: 

𝛿𝑝𝑗
ℎ = 𝑓𝑗

ℎ′(𝑛𝑒𝑡𝑝𝑗
ℎ ) ∑ 𝛿𝑝𝑘

𝑜

𝑘

𝑤𝑘𝑗
𝑜  (2.30) 

where 𝛿𝑝𝑗
ℎ  is the error at each hidden unit. 

 Now we can update the weights: 

To update weights on the output layer: 

𝑤𝑘𝑗
𝑜 (𝑡 + 1) = 𝑤𝑘𝑗

𝑜 (𝑡) + 𝜂𝛿𝑝𝑘
𝑜 𝑖𝑝𝑗 (2.31) 

To update weights on the hidden layer: 

𝑤𝑗𝑖
ℎ(𝑡 + 1) = 𝑤𝑗𝑖

ℎ(𝑡) + 𝜂𝛿𝑝𝑗
ℎ 𝑥𝑖 (2.32) 

Where 𝜂 is the learning rate parameter. 

 Finally, the error term should be calculated and if it is acceptably small for each of 

the training-vector pairs, training can be stopped; to calculate the error term: 

𝐸𝑝 =
1

2
 ∑ 𝛿𝑝𝑘

2

𝑀

𝑘=1

 (2.33) 

Figure 2.14 illustrates the implementation of BP algorithm to train the MLP network and 

make it ready for speaker identification. 
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Figure 2.14 MLP Network Trained by BP Learning Algorithm 

Now MLP is designed by BP to provide best matching speaker for each input vector. 

After training part, the stored parameters from training parts are used now for 

identification. This is done as following: 

1. Extracted features form unknown speaker (need to be identified) are fed into the 

network and without target output. 

2. Weights and thresholds for each trained speaker are used by the network. 

3. Compare the output with some predefined output decision. 

4. The network finds the closest matching output using the weights and thresholds 

stored before. 

5. Decision is made and the speaker is identified. 

2.7.2.4 Decision Trees (DT) 

DT are popular approaches for representing classifiers by collect rules, which are 

organized in a hierarchical fashion, that implement a decision structure [54]. DT use a 
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predictive model that predicts the value of a target based on several inputs. The 

representation of the model follows a tree-based that is composed of nodes and edges. 

DT is a directed tree that starts with a node called the “root”, which has no incoming 

edges. The other nodes have one incoming edge and could be an internal (test) or leaves 

(decision) nodes [28]. The test vector path in DT will move through the non-leaves 

nodes to be evaluated and then directed to one of two subsequent nodes based on a 

decision. The process continues until a leaf is reached where it corresponds to a specific 

class, which, in our situation is a speaker model.  

In speaker recognition area, DT can be used by training a binary DT for each speaker. 

This is done by obtaining the feature vectors from the training data for all speakers. 

Then all the data is labeled in the following manner: for a specific speaker, all his/her 

feature vectors are labeled as “one” and “zero” for the feature vectors of other speakers. 

The leaves labeled with the speaker class “one” indicate that “this is the speaker” and 

“zero” that “this is not the speaker”. The leaves have also the probability measure for 

each speaker. In speaker identification, all the feature vectors of the test utterances are 

applied to each decision tree. A likelihood measure is used to identify a certain speaker 

by using the decision tree probabilities [54]. 

2.7.2.4.1 Classification and Regression Trees (CART) 

Breiman’s CART is one of several popular decision trees that is selected for our study 

when DT is applied to do the identification part on the enrolled speakers. CART stands 

for Classification and Regression Trees that is presented by Breiman, Freidman, Olshen, 

and Stone in 1984 [55]. CART decision tree constructs binary trees, where each internal 

node has exactly two outgoing edges. The splits are selected using the towing criteria. 



40 

 

The CART constructed tree is pruned by cost–complexity Pruning [28]. Pruning is the 

process of removing the subtrees that have been grown excessively to classify a small 

portion of the training data and it is used to improve the performance on the testing data 

[54]. CART has the feature of generating regression trees where their leaves predict a 

real number and not a class, based on the weighted mean for node. Another feature in 

CART is the ability to handle missing values by surrogating splits.  

CART algorithm follows only yes/no questions to search for all possible variables in 

order to find the best split with maximum homogeneity and the process is repeated for 

each of the resulting data fragments [56].  

Building a classification tree (like in our case) where learning samples are split up to last 

observations is time consuming. Splitting rules are used to construct the tree by splitting 

learning sample to smaller parts whereas each time data have to be divided into two 

parts with maximum homogeneity. Figure 2.15 presents the CART splitting algorithm in 

general. 

 

Figure 2.15 Splitting Algorithm of CART 
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where, 𝑡𝑃𝑎𝑟𝑒𝑛𝑡, 𝑡𝐿𝑒𝑓𝑡, 𝑎𝑛𝑑 𝑡𝑅𝑖𝑔ℎ𝑡 are parent, left and right nodes; 𝑃𝐿𝑒𝑓𝑡 𝑎𝑛𝑑 𝑃𝑅𝑖𝑔ℎ𝑡 are the 

probabilities of left and right nodes; 𝑥𝑗 is variable j;  𝑥𝑗
𝑅  is best splitting value of variable 

𝑥𝑗 . 

To partition the acoustic space according to [57] [58], let 𝑅 = {𝑅𝑘}1≤𝑘≤𝐾 be a partition 

of acoustic feature space 𝐵, defined as: 

⋃ 𝑅𝑘 = 𝐵          𝑎𝑛𝑑         𝑅𝑖 ∩ 𝑅𝑗  =  ∅ (2.34) 

Each partition 𝑅 corresponds to terminal leaf in the tree, where each leaf can be reached 

by a particular path through the tree. To train a tree to perform a good separation 

between classes, we need to define a criterion 𝐶(𝑅) to measure the purity of the partition 

and define the best partition 𝑅∗ with respect to criterion 𝐶 as: 

 𝑅∗ = 𝑎𝑟𝑔𝑅 max 𝐶(𝑅) (2.35) 

𝑅∗ can be found by several algorithm such as CART. The criterion 𝐶 in CART is 

expressed as the weighted average of a local criterion 𝑐𝑘 to measure the region purity. 

Two common region purity measurements are used: 

1. Entropy criterion: 

 𝑐𝑘 = ∑ 𝑃𝑗𝑘

𝐽

𝑗=1

log 𝑝𝑗𝑘     (2.36) 

2. Gini criterion: 

𝑐𝑘 = ∑ 𝑃𝑗𝑘
2

𝐽

𝑗=1

− 1 (2.37) 
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In (2.36), (2.37),  𝑐𝑘 is the criterion value on region 𝑅𝑘, 𝑃𝑗𝑘 is the probability of the class 

j in region k, J is the total number of classes. The overall criterion value 𝐶(𝑅) is the 

summation of  𝑐𝑘over all the partitions, as: 

  𝐶(𝑅) = ∑ 𝑐𝑘

𝐾

𝑘=1

   (2.38) 

Since there is no stopping rule to give an optimal tree, Breiman et al. introduced the 

pruning procedure after the over growing procedure of the tree. The scores in each leaf 

can be binary score or log probability ratio score, defined as: 

 Binary score:  

𝑆𝑅𝑋 = {
+1                      , 𝑁𝑅𝑋(𝑋) > 𝑁𝑅𝑋(�̅�)

−1                                     , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2.39) 

 

 Log probability ratio score: 

  𝑆𝑅𝑋 = log 𝑃(𝑋|𝑅𝑋) − log 𝑃(�̅�|𝑅𝑋) (2.40) 

where 𝑋 is the true speaker, �̅� is any other speaker. 

2.8 Performance Measurements 

Speaker identification algorithms work as classifiers to classify speakers into their real 

identity. There are several evaluation parameters to measure the performance of the 

proposed classifiers such as classification accuracy, precision, and recall. To calculate 

these parameters we need first to compute the confusion matrix elements of each 

classifier. As shown in figure 2.16, confusion matrix is composed of four elements: True 

positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) [59] 

[60]. If the predicted and true classes are the same, we have a true result. TP measure 
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indicates how many true speakers are accepted into the system. TN measure indicates 

how many imposters are rejected by the system. Error occurred when the predicted class 

predicts positive or negative value, where it is the opposite value in the true class. FP 

measure indicates how many imposters are accepted to the system as a true speaker. FN 

measure indicates how many true speakers are rejected by the system as an imposter. 

 

Figure 2.16 Confusion Matrix 

Precision (or positive predictive value) measures that fraction of speakers classified as 

positive that are truly positive. Recall (or sensitivity) measures the fraction of positive 

speakers that are correctly labeled. Accuracy measures all the correctly labeled speakers 

from all the speakers participated to the system. The following formulas represent 

precision, recall, and accuracy according to confusion matrix: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                    (2.41) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                           (2.42) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                              (2.43) 
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Proposed Methodology  

 

 

 

 

3.1 Introduction 

In this chapter, we will propose a text-independent speaker identification system and 

discuss our methodology for identifying groups of speakers. In this thesis, our goal is to 

upgrade the identification rate by using various speaker identification algorithms 

separately and together. As mentioned in chapter 2, any SIS is composed of two 

modules: feature extraction and pattern matching. SIS is the process of finding the 

identity of an unknown speaker by comparing his/her voice with voices of registered 

speakers in the database as illustrated in figure 3.1 [7] . Extracting feature vectors is 

done to build a reference speaker model, as shown in figure 3.1, let “M” is the number 

of speakers, there are M speaker models registered in speaker database. This step is 

called the training phase (or enrollment phase). In the testing phase (or identification 

phase), unknown speaker enters the system. The feature extraction part is done on the 

unknown voice, a parallel comparison between all the M speaker models and the 

unknown speaker being performed. The most likely score is reported to make the 

decision of the unknown speaker identity.  
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Figure 3.1 Basic Structure of SIS 

In our case, we are working in a close-set identification where the result will be: i) one 

of the preregistered and trained speaker models or ii) “not identified” from the M 

speaker models.  

The procedure starts with signal pre-processing, the signal being prepared for feature 

extraction and after that, the MFCCs technique is applied for feature extraction. Once 

the speakers’ models are built into the system, the actual procedure of speaker 

identification can be applied by pattern matching models.  

There are two main categories of models, unsupervised and supervised models [61]. In 

unsupervised training algorithms, the speaker model is built from feature vectors for that 

speaker only. In supervised training algorithms, to build the model, the feature vectors 

(associated with labels to determine a class information) are coming from numerous 

speakers. Unsupervised classifier has the advantage of avoiding complicated 

computation because there is no need to reconfigure all speaker models when a new 

speaker is added to the system. However, even if the extensive time consumed in 
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supervised algorithms is not preferred, some tasks found that adding additional speakers 

during training enhanced performance [61] [54].  

In this work, we are following a comparative study between two unsupervised (VQ and 

GMM) and two supervised (ANN and DT) classifiers. The scope is to analyze their 

identification accuracy over the same dataset of speakers. The following sections will 

provide some details of the entire automatic speaker identification system that is 

performed in this study.  

3.2 Proposed Methodology  

The goal of the work proposed here is to identify a closed set of speakers from different 

speech corpora and to prove the identification accuracy with different inputs. The 

speakers recorded their utterances under different conditions and have various dialects of 

English language. The proposed SIS is composed of two main modules: feature 

extraction module and feature matching (pattern classification) module. The feature 

extraction module is done using MFCCs. Then, feature matching module is applied with 

VQ, GMM, ANN, and DT algorithms to compare the identification results. Finally, the 

system tries to improve the identification rate by fusion the results outcome from the 

four classifiers by applying the majority rule.   

3.2.1 Speaker Database  

To test the identity of each speaker, all the simulations in this study are done using a 

speaker database. Our speaker database is composed of 120 English speakers (80 male 

and 40 female) from open source corpora available for speech researches. Speaker 

voices files are downloaded from English Language Speech Database for Speaker 
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Recognition (ELSDSR) corpus [62], VoxForge speech corpus [63], and Pacific 

Northwest/Northern Cities (PN/NC) corpus [64]. The speaker database in this study is 

organized as follows: each speaker has a folder labeled with a number (serially labeled). 

The speaker folder contains all the audio speech files of his/her voice. Each speaker 

folder has two distinct folders, one for training, and one for testing. The audio files 

duration are divided into 80% for training and 20% for testing. The training folder 

contains about one minute to two minutes duration of audio files. The testing folder 

contains audio files with a length varying between 15 to 30 seconds. To satisfy the 

required time needed for training and testing, the number of these files depends on the 

corpus. 

In ELSDSR and PN/NC corpora all the speakers recordings speak the same sentences, 

where in VoxForge corpus speakers have their own sentences. ELSDSR corpus design 

was a joint effort of the faculty, Ph.D. and Master students from the department of 

Informatics and mathematical modelling, Technical University of Denmark (DTU). The 

speakers are talking in English and most of them are non-native speakers. The goal of 

this work is to provide speech data for the development and evaluation of automatic 

speaker recognition system.  

VoxForge corpus is a collection of transcribed speech for use with free and open source 

speech recognition engines. The submitted audio files meet the General Public License 

(GPL), and they are compiled into acoustic models for use in speech and speaker 

recognition purposes. Most of the speakers in this work are came from this corpus and 

some of them are non-native English speakers.  
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PN/NC corpus is available from University of Washington's Phonetics Laboratory, 

Department of Linguistics. The lab concentrates on acoustic analysis of spoken language 

and speech perception. The corpus includes 3600 audio files. Files are readings of 180 

sentences by different persons from each of two dialect regions of American English 

(the Pacific Northwest and the Northern Cities).  

Our speaker database is composed of 10 female and 12 male from ELSDSR, 10 female 

and 10 male from PN/NC, the rest are from VoxForge corpus (58 male/ 20 female). 

Table 3.1 shows the audio file information used in this work. 

Table 3.1 Audio File Information 

Recording Attribute Value 

File type wav 

Sampling Rate (Hz) 16000 to 48000 

Bit-depth (bit) 16 

Number of channels 1 

3.2.2 Feature extraction by MFCCs 

As mentioned earlier in chapter 2 that some studies divide the processes into feature 

extraction, training and testing. Feature extraction module is needed in both training and 

testing phases to extract the speaker dependent features from the speech signal. In our 

work, we are using MFCCs technique for extracting the most significant features in 

modelling speaker, which are the first 13 MFCCs [65]. To perform feature extraction we 

do the following: 
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1. Reading the speaker audio file to convert the continuous speech signal is into 

discrete domain. 

2. Blocking the speech signal into frames with the length of 20 to 40ms, and overlap 

of 50% to 75%. 

3. Windowing each frame with hamming window function to avoid problem brought 

by truncation of the signal. 

4. Applying a pre-emphasis filter to each frame to enhance the speech by lifting the 

high frequency spectral components of speech.  

5. Spectral analyzing, frame by frame, to transfer speech signal into short-term 

spectrum. 

6. Extracting features for converting speech into parameter representation. 

3.2.3 Speaker Identification   

The identification procedure is actually done in pattern match module. As discussed in 

chapter 2, for the identification process, the pattern matching module should pass two 

important phases: enrollment (training) phase and identification (testing) phase. In this 

module, we are applying VQ, GMM, ANN, and DT models as speaker identification 

algorithm. The feature vectors of speakers are trained by VQ, GMM, ANN, and DT to 

build reference model for each speaker. This is called the enrollment phase. The result of 

this phase is creating the enrolled speaker database. Testing phase starts when an 

unknown speaker enters the system and needs to be identified as one of the speaker 

database. This is done by VQ, GMM, ANN, and DT to choose the best speaker matching 

model. Tests are also done by fusing the results of the four algorithms and compare the 

results of each algorithm separately and when they are fused together. The goal is to 
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come with an efficient SIS that identifies most of speakers, if not all of them. Now we 

will explain the training and testing phases during speaker identification process.  

The first speaker identification algorithm used in this study is VQ algorithm. In this 

algorithm, the trained feature vectors are saved into codebooks for each speaker. By 

using LBG algorithm, codebooks are generated. When unknown speaker enters the 

system, the features of speech signal is extracted and ED comparison is done between 

feature vectors of unknown speaker and the codeword of codebooks of trained speakers 

to find out the best match and identify the unknown speaker. Figure 3.2 illustrates VQ 

model for identifying speakers. 

 

 

 

 

 

 

 

Figure 3.2 Architecture of Speaker Identification System Using VQ 
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The second speaker identification algorithm used in this study is GMM algorithm. After 

feature extraction, the feature vectors are trained to build GMM speaker models . Each 

speaker model  is modeled by a Gaussian mixture density that is the weighted sum of 

M component densities. ML estimation is used to find the parameters that maximize the 

likelihood of GMM. EM algorithm is used to refine the GMM parameters to 

monotonically increase the likelihood of the estimated model. The parameters needed 

for a complete Gaussian mixture density are the mean vectors, covariance matrices and 

mixture weights that are available from all component densities. In our work we are 

training the GMM for all components starting from 1 up to 4 mixtures, and return the 

GMM model with the best fit. To identify unknown speaker we have to find the model 

with maximum likelihood a posteriori for observation sequence. Figure 3.3 illustrates 

GMM model for identifying speakers. 

 

 

 

 

 

 

 

Figure 3.3 Architecture of Speaker Identification System Using GMM 
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The third speaker identification algorithm used in this study is MLP neural network 

algorithm. BP is used for training the nodes in MLP network according to error-

correction learning rule. Input vectors are the 13 MFCCs and target output vectors are 

features of each speaker enrolled in the system. Input and target output vectors are 

provided for training. Then, the difference between actual outputs and target outputs are 

computed for more changes until reaching desired results. MLP provides best matching 

speaker for each input vector. After training part, the stored parameters from training 

parts are used now for identification. Extracted features form unknown speaker are fed 

into the network. Weights and thresholds for each trained speaker are used by the 

network. The network compares the output with some predefined output decision to find 

the closest matching output using the weights and thresholds stored before. Finally, 

Decision is made and the speaker is either correctly identified or not. Figure 3.4 

illustrates MLP model for identifying speakers. 

             

Figure 3.4 Architecture of Speaker Identification System Using MLP 
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The fourth speaker identification algorithm used in this study is CART algorithm. CART 

decision tree constructs binary trees, where each internal node has exactly two outgoing 

edges. For each speaker, a binary DT is trained by obtaining the feature vectors from the 

training data for all speakers. Then all the data is labeled in the following manner: for a 

specific speaker, all his/her feature vectors are labeled as “one” and “zero” for the 

feature vectors of other speakers. The leaves labeled with the speaker class “one” 

indicate that “this is the speaker” and “zero” that “this is not the speaker”. The leaves 

have also the probability measure for each speaker. To identify a certain speaker, all the 

feature vectors of the test utterances are applied to each decision tree. A likelihood 

measure is used to identify a certain speaker by using the decision tree probabilities. 

Figure 3.5 illustrates CART model for identifying speakers. 

 

 

 

 

 

 

 

Figure 3.5 Architecture of Speaker Identification System Using CART 
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3.2.4 Majority Rule Fusion  

In speaker recognition area, relying on a single feature extraction method or a single 

pattern classifier does not always come out with the desired high identification rate. To 

compensate for this issue, a new direction in SR research (called fusion) has been 

proposed [66] [67]. The idea of fusion is to get the final decision depending on multiple 

feature extraction methods [68] or multiple classifiers [69] [70] to improve the 

identification. Data fusion combines scores from these different models trained for a 

speaker. However, if all models agree on the same type of error, no improvement occurs 

from fusion [61]. So, some degree of un-correlation between models is needed to 

improve the identification rate.  

There are different data fusion techniques that depend on the type of information to be 

combined. Linear or log opinion pools can be used if we are dealing with probabilities as 

results [61] [71]. If the results are class labels, voting can be used [72].  

In our study, we will follow the voting procedure by majority rule because the outputs 

are speaker labels. The majority test rule is based on the voting procedure, which means 

that the score for success rate will be based on the majority of votes received by a testing 

feature vector during the recognition process. This is done as following: i) if three or all 

classifiers voted for a certain speaker identification number, then the speaker is 

identified by the majority voting, or ii) if two classifiers voted for a certain speaker 

identification number and the other two classifiers disagree on the speaker identification 

number, then the speaker is identified by the majority voting. Majority voting fail to 

produce correct result in two cases: i) all four classifiers agree on the same speaker 

identification number, or ii) two classifiers agree on certain identification number where 

bolbo
Highlight
disagree
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the other two classifiers agree on another identification number. The next chapter will 

discuss in details the experiments of these classifiers individually and in fusion. Figure 

3.6 illustrates the general structure of the text-independent speaker identification system 

that is proposed here. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Architecture of Proposed Speaker Identification System 
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4.1 Introduction 

In this chapter, several experiments on a closed set of speakers reading sentences (that 

are chosen from the corpus they belong to) are performed. We have 120 speakers from 

three open source corpora available to be downloaded for speech researches. Speakers 

are speaking English with different dialects such as British, Canadian, American, and 

Indian. The main purpose of these tests is to get the identification rate for each speaker 

identification algorithm discussed in the previous chapter. Then, by applying some 

strategies, their performance is upgraded. 

4.2 Experiments and Results 

The experiments in this study are done by using software MATLAB R2012a (win64) 

with operating system version: Microsoft Windows 7 Home Premium Service Pack1, 

with the processor: Intel(R) Core(TM) i5- 2450M CPU @ 2.50 GHz., and 4GB system 

memory. To perform the simulations, three methods are employed. The first one is 

applied on 10 to 120 speakers to test the accuracy percentage of identification. The 

procedure starts with MMFCs feature extraction followed by feature matching 

algorithm. As mentioned earlier we are applying VQ, GMM, ANN, and DT algorithms. 
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Then, an additional step is added to these results by fusion the four algorithms according 

to majority rule. 

In the second approach, we are randomly choosing six groups of 25 speakers and re-

apply the same procedure of the first experiments method. These groups are labeled with 

A, B, C, D, E, and F. 

The goal of these two methods is to compute the accuracy of identification (%) applied 

to various speaker groups using different Speaker Identification algorithms according to 

the following formula: 

Identification Rate of SIS = (
No.of Correctly Identified Samples 

Total No.of Tested Samples
) ∗ 100           (4.1) 

The third method is applied on group of speakers containing a mixture of true speakers 

and imposter speakers. This is done to check the performance of proposed classifiers by 

using some evaluation measures. To find these parameters we need to compute the TP, 

TN, FP, and FN. 

4.2.1 MFCCs 

To capture the desired features from speech signals, MFCCs is the feature extraction 

step that is necessary to start any of our experiments. The time needed for extracting 

features are different according to the speaker group size. Table 4.1 shows the time 

needed for MFCCs to extract features from 10 to 120 speakers. Table 4.2 shows the time 

needed for MFCCs to extract features from six groups of 25 speakers.  
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Table 4.1 MFCCs Feature Extraction Time for 10-120 Speakers 

No. of Speakers Feature Extraction Time (sec) 

10 4.961617 

20 8.24186275 

30 17.318721 

40 27.55157367 

50 37.62242733 

60 45.66863467 

70 51.84141475 

80 64.60847 

90 64.27714133 

100 64.2426995 

110 77.41341 

120 97.694765 

 

Table 4.2 MFCCs Feature Extraction Time for 25 Speakers in Groups 

No. of Speakers Feature Extraction Time (sec) 

A 24.541644 

B 28.125971 

C 33.163677 

D 37.39924 

E 19.572934 

F 21.471976 

 

4.2.2 Vector Quantization 

VQ is the first algorithm used in this study for speaker identification. Tables 4.3 and 4.4 

show the time consumed in training and testing by VQ. Table 4.5 illustrates the 

identification rate and speakers not identified by VQ for 10 to 120 speakers. Table 4.6 
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illustrates the identification rate and speakers not identified by VQ for six groups of 25 

randomly chosen speakers labeled with A, B, C, D, E, and F.  

Table 4.3 VQ Training/Testing Time for 10-120 Speakers 

No. of Speakers Train (sec) Test (sec) 

10 54.1906315 25.5666305 

20 105.815471 77.726491 

30 136.665454 194.681687 

40 154.478126 325.517194 

50 163.664888 504.6094675 

60 191.9997045 803.424704 

70 208.4509125 1305.5708 

80 220.2587615 1737.748911 

90 232.697627 2258.182822 

100 252.170425 3040.665092 

110 271.7416595 3870.655405 

120 410.0407425 4614.292152 

 

Table 4.4 VQ Training/Testing Time for 25 Speakers in Groups 

Group Label 

(25 speaker) 
Train (sec) Test (sec) 

A 106.442202 160.8639 

B 47.765229 221.20324 

C 165.745871 189.074383 

D 103.727004 190.380027 

E 66.544932 162.18909 

F 51.292002 269.756507 
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Table 4.5 VQ Identification Rate for 10-120 Speakers 

No. of Speakers 
Identification Rate 

(%) 
Speaker not Identified 

10 100 none 

20 96.1112 none 

30 90.9091 none 

40 87.5862 none 

50 89.6552 none 

60 86.5979 none 

70 77.8626 none 

80 73.6634 sp61 

90 68.4818 sp61, sp70 

100 60.8696 sp61, sp90 

110 60.7099 sp50, sp97 

120 53.7981 sp66, sp71, sp97, sp105, sp118 

 

Table 4.6 VQ Identification Rate for Groups of 25 Speakers 

Group Label 

(25 speaker) 

Identification Rate 

(%) 

Speaker not Identified 

A 97.1429 none 

B 92.4812 none 

C 88.9764 none 

D 88.1944 none 

E 89.2473 none 

F 84.7953 none 

4.2.3 Gaussian Mixture Models  

GMM is the second algorithm used in this study for speaker identification. Tables 4.7 

and 4.8 show the time consumed in training and testing by GMM. Table 4.9 illustrates 
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the identification rate and speakers not identified by GMM for 10 to 120 speakers. Table 

4.10 illustrates the identification rate and speakers not identified by GMM for six groups 

of 25 randomly chosen speakers labeled with A, B, C, D, E, and F.  

Table 4.7 GMM Training/Testing Time for 10-120 Speakers 

No. of Speakers Train (sec) Test (sec) 

10 107.752653 1.606699667 

20 198.267689 3.467813333 

30 290.439653 6.704860667 

40 408.462581 14.77693333 

50 496.657676 15.61544933 

60 572.438726 23.69149033 

70 690.543315 36.08702067 

80 802.272165 46.63123267 

90 951.66434 62.72145367 

100 1049.391832 76.089278 

110 1218.654934 99.15649767 

120 1270.527955 124.8263563 

 

Table 4.8 GMM Training/Testing Time for 25 Speakers in Groups 

Group Label 

(25 speaker) 
Train (sec) Test (sec) 

A 343.332542 7.338984 

B 409.913978 10.184273 

C 391.25891 22.698471 

D 264.914517 20.283482 

E 318.923986 13.376885 

F 373.99106 33.968833 
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Table 4.9 GMM Identification Rate for 10-120 Speakers 

No. of Speakers 
Identification Rate 

(%) 
Speaker not Identified 

10 100 none 

20 98 none 

30 96.9697 none 

40 91.7241 none 

50 92.1182 none 

60 89.0034 none 

70 84.9873 none 

80 77.8218 none 

90 78.5479 sp61 

100 72.791 sp61, sp88 

110 70.9914 sp61, sp92 

120 65.7648 sp71 

 

Table 4.10 GMM Identification Rate for Groups of 25 Speakers 

Group Label 

(25 speaker) 

Identification Rate 

(%) 
Speaker not Identified 

A 100 none 

B 95.4887 none 

C 93.7008 none 

D 97.2222 none 

E 91.3978 none 

F 88.8889 none 
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4.2.4 Artificial Neural Networks 

ANNs represent the third algorithm used in this study for speaker identification. Tables 

4.11 and 4.12 show the time consumed in training and testing by ANN. Table 4.13 

illustrates the identification rate and speakers not identified by ANN for 10 to 120 

speakers. Table 4.14 illustrates the identification rate and speakers not identified by 

ANN for six groups of 25 randomly chosen speakers labeled with A, B, C, D, E, and F.  

Table 4.11 ANN Training/Testing Time for 10-120 Speakers 

No. of Speakers Train (sec) Test (sec) 

10 247.699941 3.6522675 

20 982.225262 11.898487 

30 2887.185018 20.602352 

40 5237.510393 40.548091 

50 10931.01889 70.417462 

60 17555.02375 125.986802 

70 26296.2029 188.4948665 

80 36772.80875 296.655542 

90 47249.02103 331.3452505 

100 59404.94375 475.37045 

110 71590.79588 553.83079 

120 83735.17831 781.033206 
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Table 4.12 ANN Training/Testing Time for 25 Speakers in Groups 

Group Label 

(25 speaker) 
Train (sec) Test (sec) 

A 2013.975236 15.959819 

B 2407.481957 51.917671 

C 1795.01945 35.321869 

D 2076.721296 39.454763 

E 2231.354544 40.233194 

F 1504.557204 45.254354 

 

Table 4.13 ANN Identification Rate for 10-120 Speakers 

No. of Speakers 
Identification Rate 

(%) 
Speaker not Identified 

10 93.3333 none 

20 88 sp6 

30 78.7879 sp26  

40 77.931 sp6, sp14, sp26  

50 77.3399 sp7, sp26, sp43 

60 78.3505 sp26, sp37 

70 70.9924 sp6, sp7, sp26, sp61, sp66, sp67, sp70 

80 62.9703 
sp14, sp26, sp40, sp61, sp62, sp67, sp70,sp74, 

sp76, sp78 

90 65.3465 
sp7, sp14, sp26, sp61, sp62, sp66, sp67, sp70, 

sp71, sp74, sp76, sp78, sp83 

100 64.5161 
sp7, sp11, sp26, sp31, sp61, sp62, sp67, sp70, 

sp71, sp74, sp76, sp78, sp83, sp94 

110 61.6891 
sp6, sp7, sp26, sp40, sp53, sp55, sp61, sp67, 

sp70, sp74, sp76, sp78, sp83, sp94, sp105, sp110 

120 52.2373 

sp6, sp7, sp14, sp26, sp50, sp61, sp66, sp67, 

sp70, sp71, sp74, sp76, sp78, sp83, sp94, sp105, 

(sp110-sp120) 
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Table 4.14 ANN Identification Rate for Groups of 25 Speakers 

Group Label 

(25 speaker) 

Identification Rate 

(%) 
Speaker not Identified 

A 90 sp14 

B 93.985 none 

C 74.8031 sp11 

D 84.0278 sp25 

E 84.9462 none 

F 85.3801 sp14 

4.2.5 Decision Trees 

DT is the fourth algorithm used in this study for speaker identification. Tables 4.15 and 

4.16 show the time consumed in training and testing by DT. Table 4.17 illustrates the 

identification rate and speakers not identified by DT for 10 to 120 speakers. Table 4.18 

illustrates the identification rate and speakers not identified by DT for six groups of 25 

randomly chosen speakers labeled with A, B, C, D, E, and F.  

Table 4.15 DT Training/Testing Time for 10-120 Speakers 

No. of Speakers Train (sec) Test (sec) 

10 193.984666 25.242898 

20 260.919403 39.303117 

30 351.886925 64.2044215 

40 487.625768 139.0263385 

50 641.225143 181.775019 

60 911.575004 175.653267 

70 1061.486839 239.9670805 

80 1931.438243 488.5699825 

90 193.984666 25.242898 

100 260.919403 39.303117 
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110 351.886925 64.2044215 

120 487.625768 139.0263385 

 

Table 4.16 DT Training/Testing Time for 25 Speakers in Groups 

Group Label 

(25 speaker) 
Train (sec) Test (sec) 

A 49.894788 13.761732 

B 51.133344 16.268922 

C 49.202585 19.890045 

D 43.061313 15.117821 

E 38.246927 10.22457 

F 50.780036 10.804681 

 

Table 4.17 DT Identification Rate for 10-120 Speaker 

No. of Speakers 
Identification Rate 

(%) 
Speaker not Identified 

10 100 none 

20 94 sp6 

30 86.8687 sp17 

40 82.069 sp6, sp8, sp14, sp17 

50 80.2956 none 

60 71.134 sp7, sp10, sp40, sp43 

70 63.3588 sp4, sp7, sp11, sp31, sp61, sp62 

80 54.0594 
sp4, sp7, sp18, sp40, sp45, sp46, sp55, sp61, 

sp62 

90 52.6403 sp7, sp46, sp60, sp61, sp62 

100 47.5456 sp4, sp33, sp40, sp58, sp61, sp71, sp90, sp98 

110 45.6548 
sp4, sp7, sp11, sp17, sp20, sp23, sp40, sp43, 

sp53, sp61, sp71 

120 41.3111 sp1, sp6, sp11, sp40, sp46, sp61, sp89 
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Table 4.18 DT Identification Rate for Groups of 25 Speakers 

Group Label 

(25 speaker) 

Identification Rate 

(%) 
Speaker not Identified 

A 92.8571 none 

B 90.2256 none 

C 78.7402 sp6 

D 84.7222 none 

E 83.871 none 

F 75.4386 none 

 

4.2.6 Fusion  

The Majority Rule is applied to the results of the four previous algorithms as a fusion 

method. The solutions of VQ, GMM, ANN, and DT are compared and the final result is 

represented by the majority of solutions. Because four results are obtained, two or more 

equal results will be chosen as a fusion result. Figure 4.1 shows an example of case 1 

where all the four algorithms agree to identify the same speaker. Figure 4.2 shows an 

example of case 2 where three from four algorithms agree to identify the same speaker. 

Figure 4.3 shows an example of case 3 where two algorithms agree to identify the same 

speaker and the other two algorithms did not agree on a result. Cases 1, 2, and 3 show 

when fusion is applied successfully but if results are equally produced, then fusion 

cannot be done. Table 4.19 illustrates the identification rate and speakers not identified 

by fusion for 10 to 120 speakers. Table 4.20 illustrates the identification rate and 

speakers not identified by fusion for six groups of 25 randomly chosen speakers labeled 

with A, B, C, D, E, and F.   
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Figure 4.1 Majority Decision Fusion Example of Case 1 

 

Figure 4.2 Majority Decision Fusion Example of Case 2 

 

Figure 4.3 Majority Decision Fusion Example of Case 3 
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Table 4.19 Identification Rate for 10-120 Speakers by Fusion 

No. of Speakers 
Identification Rate 

(%) 
Speaker not Identified 

10 100 none 

20 98 none 

30 87.8788 none 

40 88.9655 none 

50 90.1478 none 

60 88.6598 none 

70 77.6081 sp7, sp61, sp70 

80 75.0495 sp7, sp40, sp61, sp71 

90 73.9274 sp61 

100 72.0898 sp61, sp71 

110 70.3794 sp71 

120 62.3309 sp61, sp71, sp115, sp118 

 

Table 4.20 Identification Rate for Groups of 25 Speakers by Fusion 

Group Label 

(25 speaker) 

Identification Rate 

(%) 
Speaker not Identified 

A 98.5714 none 

B 95.4887 none 

C 86.6142 none 

D 95.1389 none 

E 89.2473 sp21 

F 90.6433 none 
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4.2.7 Evaluation  

The third set of experiments aims to evaluate the performance of the four classifiers plus 

the fusion. Tests are applied on group of speakers contain both true and imposter 

speakers. The database is divided into 60% for true speakers and 40% for imposters. We 

took the 25 speakers of groups A, B, C, D, E, and F and replace 40% of them with other 

speakers (as imposters) to get 10 imposters and 15 true speakers. We also took the 

database of 50 and 100 speakers and divided the speakers into 60% true speakers and 

40% imposters, resulting in 30 true speakers plus 20 imposters for the 50-speaker 

database and 60 true speakers plus 40 imposters for the 100-speaker database. Precision, 

Recall, and accuracy are shown for VQ, GMM, ANN, DT, and fusion for performance 

evaluation. Tables 4.21, 4.22, 4.23, 4.24, and 4.25 illustrate the performance measures 

when applied to groups of 25 speakers by VQ, GMM, ANN, DT, and fusion 

respectively. Tables 4.26 and 4.27 illustrate performance measures of VQ, GMM, ANN, 

DT, and fusion when applied on 50 and 100 speakers respectively. 

 Table 4.21 VQ Performance Measures on Groups of 25 Speakers  

Group Label 

(25 speaker) 
TP TN FP FN Precision Recall Accuracy(%) 

A 15 9 1 0 0.9375 1 96 

B 15 10 0 0 1 1 100 

C 15 7 3 0 0.8333 1 88 

D 15 10 0 0 1 1 100 

E 15 8 2 0 0.8824 1 92 

F 15 9 1 0 0.9375 1 96 
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Table 4.22 GMM Performance Measures on Groups of 25 Speakers 

Group Label 

(25 speaker) 
TP TN FP FN Precision Recall Accuracy(%) 

A 15 10 0 0 1 1 100 

B 15 10 0 0 1 1 100 

C 15 6 4 0 0.7895 1 84 

D 15 9 1 0 0.9375 1 96 

E 15 7 3 0 0.8333 1 88 

F 15 10 0 0 1 1 100 

 

Table 4.23 ANN Performance Measures on Groups of 25 Speakers 

Group Label 

(25 speaker) 
TP TN FP FN Precision Recall Accuracy(%) 

A 14 10 0 1 1 0.9333 96 

B 15 10 0 0 1 1 100 

C 14 9 1 1 0.9333 0.9333 92 

D 15 9 1 0 0.9375 1 96 

E 15 8 2 0 0.8824 1 92 

F 14 10 0 1 1 0.9333 96 

 

Table 4.24 DT Performance Measures on Groups of 25 Speakers 

Group Label 

(25 speaker) 
TP TN FP FN Precision Recall Accuracy(%) 

A 15 9 1 0 0.9375 1 96 

B 15 10 0 0 1 1 100 

C 14 6 4 1 0.7778 0.9333 80 

D 15 6 4 5 0.7895 1 84 

E 15 7 3 0 0.8333 1 88 

F 15 9 1 0 0.9375 1 96 
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Table 4.25 Performance Measures on Groups of 25 Speakers by Fusion 

Group Label 

(25 speaker) 
TP TN FP FN Precision Recall Accuracy(%) 

A 15 10 0 0 1 1 100 

B 15 10 0 0 1 1 100 

C 15 8 2 0 0.8824 1 92 

D 15 10 0 0 1 1 100 

E 15 7 3 0 0.8333 1 88 

F 15 10 0 0 1 1 100 

 

Table 4.26 Performance Measures on 50 Speakers by Different Methods 

 

Table 4.27 Performance Measures on 100 Speakers by Different Methods 

SI Method TP TN FP FN Precision Recall Accuracy(%) 

VQ 60 39 1 0 0.9836 1 99 

GMM 60 37 3 0 0.9524 1 97 

ANN 56 39 1 4 0.9825 0.9333 95 

DT 56 36 4 4 0.9333 0.9333 92 

Fusion 60 39 1 0 0.9836 1 99 

 

 

SI Method TP TN FP FN Precision Recall Accuracy(%) 

VQ 30 17 3 0 0.90909 1 94 

GMM 30 17 3 0 0.90909 1 94 

ANN 25 17 3 5 0.89285 0.83333 84 

DT 30 17 3 0 0.90909 1 94 

Fusion 30 18 2 0 0.9375 1 96 
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5.1 Introduction 

This chapter focuses on discussing results of all the experiments presented in previous 

chapters. As shown in chapter 4, the identification rates of VQ, GMM, ANN, and DT 

are presented for 10 to 120 speaker databases. In addition, the identification rate by the 

same four algorithms is performed on groups of 25 speakers labeled with A, B, C, D, E, 

and F. For any speaker database, majority decision is applied to get the final result of 

identification rate. As illustrated before, some approaches did not identify correctly all 

the speakers. So, evaluation measurements are taken into account to measure the 

performance by certain metrics such as precision, recall, and accuracy. These 

performance measures need TP, TN, FP, and FN to be computed for each algorithm 

applied to any speaker database. 

5.2 Execution Time 

All the experiments in this study are time calculated in seconds to figure out the time 

consumed to execute certain procedure. There are two main modules: feature extraction 

by MFCCs and feature matching by VQ, GMM, ANN, DT, and fusion. 
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5.2.1 Feature Extraction 

Feature extraction module is needed before training or testing speaker databases. As 

shown in figure 5.1 as long as the size increased in speaker database from 10 to 120 

speaker, more time needed for MFCCs to extract features from speech signal with a 

notice that time is almost the same for 80, 90, and 100 speakers. The case of 25 speakers 

randomly chosen and grouped in A, B, C, D, E, and F, the time for MFCCs is varied 

from about 19 to 37 seconds as shown in figure 5.2. 

 

Figure 5.1 MFCCs Feature Extraction Time for 10 to 120 Speakers 
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Figure 5.2 MFCCs Feature Extraction Time for Speaker Groups 

5.2.2 Pattern Matching 

After feature extraction by MFCCs, the pattern matching module is applied. The speaker 

database is represented by either 10 to 120 speakers or groups of 25 speakers. The main 

observation about VQ is that the time needed for training is small compared to testing. 

For GMM, ANN, and DT the results show that we need more time for training compared 

to testing. Figure 5.3 shows the time difference in training by VQ, GMM, and DT 

algorithms. VQ is the fastest training algorithm for 10 to 120 speaker databases, then 

GMM, after that DT. The ANN results are omitted from comparison because it took 

very long time for training in comparison to the other three algorithms as shown in 

figure 5.4. This is obvious with groups A, B, C, D, E, and F of 25 speakers where ANN 

takes the longest time in training as shown in figure 5.5.  
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Figure 5.3 Training Time by VQ, GMM, and DT for 10 to 120 Speakers  

 

            

Figure 5.4 Training Time by VQ, GMM, ANN, and DT for 10 to 120 Speakers 
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Figure 5.5 Training Time by VQ, GMM, ANN, and DT for Speakers Groups  

Testing time as illustrated in figure 5.6 shows that GMM and DT takes the least time and 

VQ takes the longest for 10 to 120 speakers and this is true for groups of 25 speakers as 

shown in figure 5.7.  

           

Figure 5.6 Test Time by VQ, GMM, ANN, and DT for 10 to 120 Speakers 

1

10

100

1000

10000

A B C D E F

Ti
m

e
 (

se
c)

 

Speaker Group 

VQ

GMM

ANN

DT

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100 110 120

Ti
m

e
 (

se
c)

 

No. of Speaker 

VQ

GMM

ANN

DT



81 

 

 

Figure 5.7 Test Time by VQ, GMM, ANN, and DT for Speakers Groups 

As shown in previous chapter, the fusion method is combining the testing results of VQ, 

GMM, ANN, and DT algorithms, so the testing time is the time needed for testing the 

four algorithms together and decide the majority result. 

5.3 Identification Rate 

The main goal of this study is to reach to a system that effectively identifies a person 

from his/her speech. To do that, for training and testing chosen speakers, we depend on 

common and well known speaker identification algorithms. These algorithms are 

evaluated based on number of correctly identified test samples divided by the total 

number of test samples and then multiplied by 100. To measure the accuracy of our 

experiments, the identification rate is computed. Figure 5.8 shows the different of 

identification rate between VQ, GMM, ANN, DT, and majority decision fusion. It is 

obvious from the figure 5.8 that identification rate decreases with the increasing size of 

speaker database.  
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From results for 10 to 120 speakers when applying VQ, GMM, ANN, DT, and majority 

decision fusion method, we got the following observations: 

 The best identification rate we got is from GMM then fusion method because 

both of them maintain identification rate above 90% for 50 speakers and above 

60% for 120 speakers.  

 VQ results are near from fusion results until 80 speakers then from 90 to 120 

speakers results are worse than fusion.  

 ANN has stable results of identification rate from 30 to 60 speakers and from 80 

to 110 speakers.  

 Although DT scores better than ANN from 10 to 50 speakers, it has the worst 

identification rate results from 60 to 120 speakers.  

 

Figure 5.8 Identification Rate for 10 to 120 Speakers by Proposed SIS 
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In this study, we divide the large database to groups and analyze the difference in 

identification rates. As shown in chapter 4, the second experiments method was to take 

groups of 25 speakers randomly from the same speaker database of first method 

experiments. We labeled six groups with A, B, C, D, E, and F and applied the same four 

algorithms plus the fusion method. Figure 5.9 shows the identification rate results of the 

six groups. From results of groups of speakers when applying VQ, GMM, ANN, DT, 

and majority decision fusion method, we got the following observations: 

 In general, the best identification rate results come from GMM then fusion method. 

 All the four algorithms plus fusion method give the best identification rate results 

with group A and B of speakers (between 90% and 100%). 

 ANN gives the worst identification rate results with group C. 

 DT gives the worst identification rate results with group F. 

 Since the number of speakers is the same for all groups, the identification rate may 

differs from group to another according to the speakers’ environment, noise, and 

training time. 

 By taking the average identification rate from all groups A, B, C, D, E, and F for 

four algorithms plus fusion method, GMM gives the best identification rate, then 

fusion, then VQ, after that ANN, finally DT as depicted in figure 5.10. 
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Figure 5.9 Identification Rate for Speakers Groups by Proposed SIS 

 

 

Figure 5.10 Average Identification Rate for Proposed SIS over 25 Speakers 
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number of misidentified speakers increases and this is varies from one algorithm method 

to another. Figure 5.11 illustrates the following observations: 

 GMM has the best identification number of speakers because the worst case is 2 

misidentification.  

 VQ has almost the same of GMM results but when speaker database becomes 

120 speakers, we got 5 misidentification of speakers.  

 Fusion results give us the best identification number of results with 10 to 60 

speakers, then with 70 or more speakers: 1 to 4 misidentification starts to 

appear. 

 When the size of speaker database is 10 speakers, all the four algorithms with 

the fusion procedure identify all the 10.  

 Start to see 1 misidentification speaker by ANN and DT algorithms when 

speaker database between 20 and 30 speakers.  

 Rapid increase in misidentification appears clearly by ANN algorithm with 70 to 

120 speakers.  

 Generally, misidentification results start to appear with 80 or more speakers for 

all the four algorithms plus fusion procedure. 

 The worst result is 26 misidentification with 120 speakers by ANN algorithm. 
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Figure 5.11 No. of Misidentification for 10 to 120 Speakers by Proposed SIS 

As results start to be not effective when number of speakers is large, we tested another 

method of experiments by choosing randomly 25 speakers and put them in groups. As 

shown in figure 5.12, misidentification number of six groups labeled with A, B, C, D, E, 

and F and applied the same previous algorithms to these groups. The worst case is one 

speaker has not been identified by ANN, DT in group C. Beside group C, groups A, D, 

and F has one misidentification when ANN algorithm applied. Fusion method has only 

one misidentification in group E.  
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Figure 5.12 No. of Misidentification for Speakers Groups by Proposed SIS 

5.5 Performance Evaluation Measurements  

Precision, recall, and accuracy are the performance metrics used in this study to evaluate 

classification algorithms. To calculate these metrics we need confusion matrix elements: 

TP, TN, FP, and FN. We are testing the following speaker databases: 

 Groups of 25 speakers labeled with A, B, C, D, E, and F. Each group contains 15 

true speakers and 10 imposters.  

 Speaker database of 50 speakers divided into 30 true speakers and 20 imposters. 

  Speaker database of 100 speakers divided into 60 true speakers and 40 imposters. 

5.5.1 VQ Performance Measurements 

Figure 5.13 shows FP and FN of VQ algorithm with speaker groups. As seen from the 

figure there is no reject for true speaker (false negative). On the other hand, there is one 

false acceptance for imposters (false positive) in groups A and F, two FP in group E, and 

three FP in group C. There is no FP in groups B and D. 
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Figure 5.13 False Positive/False Negative for Speakers Groups by VQ 

From confusion matrix of speaker groups when VQ algorithm is applied we had 

calculated precision and recall as illustrated in figure 5.14. Because of the FN=0, 

Recall=1 in all groups which is the optimal value, where is precision has the optimal 

value in groups B and D. Group C has the worst precision value since FP=3 in this 

group, then group E with FP=2. Both groups A and F have the same precision value 

which is about 0.9 for FP=1. 

 

Figure 5.14 Precision and Recall for Speakers Groups by VQ 
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Overall accuracy is calculated from the confusion matrix for each speaker group when 

VQ algorithm is applied, as shown in figure 5.15. The worst accuracy is with group C 

with 88% and the best one is achieved in groups B and D with 100%. The other groups 

are between 92% and 96%. Since all the groups have the same number of speakers, the 

average accuracy of VQ is 95.3333% with 25 speakers groups.  

 

Figure 5.15 Accuracy Rate (%) for Speakers Groups by VQ 
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and overall accuracy (Figure 5.18) in cases of groups of 50 and 100 speakers. The 

database of 50 speakers has FP=3 which give precision= 0.9091 and FN=0 which give 

the optimal recall=1. The database of 100 speakers has FP=1 which give precision= 

0.9836 and FN=0 which give the optimal recall=1. Accuracy results of VQ for 50 and 

100 speakers are 94% and 99% respectively.  
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Figure 5.16 False Positive/False Negative for 50 and 100 speakers by VQ 

                       

Figure 5.17 Precision and Recall for 50 and 100 speakers by VQ 
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Figure 5.18 Accuracy Rate (%) for 50 and 100 speakers by VQ 

5.5.2 GMM Performance Measurements 

Figure 5.19 shows FP and FN of GMM algorithm with speaker groups. As it can be 

observed, there is no reject for true speaker (false negative) as VQ. On the other hand, 

there is one false acceptance for imposters (false positive) in group D, three FP in group 

E, and four FP in group C. There is no FP in groups A, B, and F.  

 

Figure 5.19 False Positive/False Negative for Speakers Groups by GMM 

91

92

93

94

95

96

97

98

99

100

50 100

A
cc

u
ra

cy
 R

at
e

 (
%

) 

No. of Speaker Database 

VQ Accuracy

0

1

2

3

4

A B C D E F

N
o

. o
f 

Sp
e

ak
e

r 

Speaker Group 

False Positive

False Negative



92 

 

From confusion matrix of speaker groups when GMM algorithm is applied we had 

calculated precision and recall as illustrated in figure 5.20. Because of the FN=0, 

Recall=1 in all groups which is the optimal value, where precision has the optimal value 

in groups A, B, and F. Under optimal, group D has a precision of 0.9375. Group C has 

the worst precision value since FP=4 in this group, then group E with FP=3.  

 

Figure 5.20 Precision and Recall for Speakers Groups by GMM 

Overall accuracy is calculated from confusion matrix for each speaker group when 

GMM algorithm is applied to give results as shown in figure 5.21. As it can be observed, 

the worst accuracy is with group C with 84% then group E with 88% and the best one is 

achieved in groups A, B, and F with 100%. Group D has an accuracy of 96%. Since all 

the groups are with the same number of speakers, the average accuracy of GMM is 

94.6667% with 25 speakers groups.  
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Figure 5.21 Accuracy Rate (%) for Speakers Groups by GMM 

The same tests are done for FP and FN (Figure 5.22), precision and recall (Figure 5.23) 

and overall accuracy (Figure 5.24) in cases of groups of 50 and 100 speakers. The 

database of 50 and 100 speakers has FP=3 which give precision= 0.9091 for 50 speakers 

and precision= 0.9524 for 100 speakers. Since FN=0, in both 50 and 100 speaker 

databases, the recall result gives the optimal value which is recall=1. Accuracy results of 

GMM for 50 and 100 speakers are 94% and 97% respectively. 

                       

Figure 5.22 False Positive/False Negative for 50 and 100 speakers by GMM 
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Figure 5.23 Precision and Recall for 50 and 100 speakers by GMM 

 

Figure 5.24 Accuracy Rate (%) for 50 and 100 speakers by GMM 

5.5.3 ANN Performance Measurements 

Figure 5.25 shows FP and FN of ANN algorithm with speaker groups. There is one 

reject for true speaker (false negative) in groups A, C, and F, but no false reject in 

groups B, D, and E. In addition, there is one false acceptance for imposters (false 

positive) in groups C and D, and two FP in group E. There is no FP in groups A, B, and 

F. 
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Figure 5.25 False Positive/False Negative for Speakers Groups by ANN 

From the confusion matrix of speaker groups when ANN algorithm is applied we had 

calculated precision and recall as illustrated in figure 5.26. FN=0 in groups B, D, and E, 

so recall=1 which is the optimal value, but FN=1 in groups A, C, and F, so recall= 

0.9333. Precision has the optimal value in groups A, B and F. Group E has the worst 

precision value since FP=2 in this group, then groups C and D with FP=1.  

                 

Figure 5.26 Precision and Recall for Speakers Groups by ANN 
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The overall accuracy is calculated from confusion matrix for each speaker group when 

ANN algorithm is applied to give results as shown in figure 5.27. As can be observed, 

the worst accuracy is with groups C and E with 92%. Groups A, D, and F achieved the 

same accuracy rate, which is 96%, and the best one is achieved by group B with 100%. 

Since all the groups are with the same number of speakers, the average accuracy of 

ANN is 95.3333% with 25 speakers groups.  

 

Figure 5.27 Accuracy Rate (%) for Speakers Groups by ANN 

The same tests are done for FP and FN (Figure 5.28), precision and recall (Figure 5.29) 

and overall accuracy (Figure 5.30) in cases of groups of 50 and 100 speakers. The 

database of 50 speakers has FP=3 and FN=5 which give precision= 0.89285 and recall= 

0.83333. Speaker database of 100 has FP=1 and FN=4 which give precision= 0.9825 and 

recall= 0.9333. Accuracy results of ANN for 50 and 100 speakers are 84% and 95% 

respectively. 

88

90

92

94

96

98

100

102

A B C D E F

A
cc

u
ra

cy
 R

at
e

 (
%

) 

Speaker Group 

ANN Accuracy



97 

 

 

Figure 5.28 False Positive/False Negative for 50 and 100 speakers by ANN 

 

Figure 5.29 Precision and Recall for 50 and 100 speakers by ANN 
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Figure 5.30 Accuracy Rate (%) for 50 and 100 speakers by ANN 

5.5.4 DT Performance Measurements 

Figure 5.31 shows FP and FN of DT algorithm with speaker groups. As seen from the 

figure there is only one reject for true speaker (false negative) in group C and no false 

reject in other groups. Group B is the only one with no false acceptance of imposters 

(false positive), while groups A and F have one false acceptance, group E with three 

false acceptances, and groups C and D with four false acceptances.  

 

Figure 5.31 False Positive/False Negative for Speakers Groups by DT 
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From the confusion matrix of speaker groups when DT algorithm is applied we had 

calculated precision and recall as illustrated in figure 5.32. FN=0 so recall =1 in all 

groups except group C has FN=1 so recall= 0.9333. Precision has the optimal value in 

group B only. Groups A and F have precision= 0.9375 since FP=1. Group E has FP=3 so 

precision= 0.8333. With FP=4 in groups C and D we got the worst precision values 

0.7778 and 0.7895 respectively. Notice that the slight difference between C and D 

precision values with the same FP is according to the TP value. 

 

Figure 5.32 Precision and Recall for Speakers Groups by DT 

The overall accuracy is calculated from confusion matrix for each speaker group when 

DT algorithm is applied to give results as shown in figure 5.33. As can be observed, the 

worst accuracy rate is in group C with 80%, then group D with84%, then group E with 

88%. Groups A and F achieved both accuracy rate of 96%. The optimal rate is achieved 

by group B with 100%. Since all the groups are with the same number of speakers, the 

average accuracy of DT is 90.6667% with 25 speakers groups.  
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Figure 5.33 Accuracy Rate (%) for Speakers Groups by DT 

The same tests are done for FP and FN (Figure 5.34), precision and recall (Figure 5.35) 

and overall accuracy (Figure 5.36) in cases of groups of 50 and 100 speakers. The 

database of 50 speakers has FP=3 and FN=0 which give precision= 0.90909 and 

recall=1. Speaker database of 100 has FP=4 and FN=4 which give precision= 0.9333 and 

recall= 0.9333. Accuracy results of DT for 50 and 100 speakers are 94% and 92% 

respectively. 

                           

Figure 5.34 False Positive/False Negative for 50 and 100 speakers by DT 
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Figure 5.35 Precision and Recall for 50 and 100 speakers by DT 

 

Figure 5.36 Accuracy Rate (%) for 50 and 100 speakers by DT 

5.5.5 Fusion Performance Measurements 

Figure 5.37 shows FP and FN of fusion method with speaker groups. As seen from the 

figure there is no reject for true speaker (false negative) in all groups. However, group C 

has two false acceptance of imposters (false positive) and group D has three false 

positive of imposters. 
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Figure 5.37 False Positive/False Negative for Speakers Groups by Fusion 

From the confusion matrix of speaker groups, when fusion method is applied, we had 

calculated precision and recall as illustrated in figure 5.38. Recall=1 in all groups 

because FN=0. Precision=1 in all groups except group C and E. Groups C and D have 

precision= 0.8824 and 0.8333 respectively. 

 

Figure 5.38 Precision and Recall for Speakers Groups by Fusion 

The overall accuracy is calculated from confusion matrix for each speaker group when 

fusion method is applied to give results as shown in figure 5.39. As seen in the figure, 
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D, and F have accuracy rate of 100%. On other hand, group C has 92% and group E has 

88% of accuracy. Since all the groups are with the same number of speakers, the average 

accuracy of fusion method is 96.6667% with 25 speakers groups.  

 

Figure 5.39 Accuracy Rate (%) for Speakers Groups by Fusion 
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Figure 5.40 False Positive/False Negative for 50 and 100 speakers by Fusion 

 

Figure 5.41 Precision and Recall for 50 and 100 speakers by Fusion 
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Figure 5.42 Accuracy Rate (%) for 50 and 100 speakers by Fusion 

5.6 Accuracy Rate for Proposed SIS 

From confusion matrix, we had calculated TP, TN, FP, and FN for VQ, GMM, ANN, 

and DT algorithms then for fusion method. We used these results for computing 

accuracy rate for 25, 50, and 100 speakers as shown before and illustrated in figures 

5.43, 5.44, and 5.45 respectively. As shown clearly in figure 5.43 that fusion method 

achieved the best accuracy rate with 25 speakers averaged from six groups, about 96%, 

then VQ and ANN both have about 95%, then GMM with about 94%. The worst 

accuracy rate is achieved by DT with about 90%. In figure 5.44, fusion has the best 

accuracy rate with 96% for 50 speakers, where VQ, GMM, and DT all have 94% and 

84% for ANN as the worst accuracy rate. In figure 5.45, for 100 speakers fusion also has 

the best accuracy rate but here also VQ achieved the same rate, which is 99%, then 

GMM with 97%, then ANN with 95%, and the worst result is DT with 92%. 
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Figure 5.43 Accuracy Rate(%) for 25 Speakers by Proposed SIS  

                   

Figure 5.44 Accuracy Rate(%) for 50 Speakers by Proposed SIS  
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Figure 5.45 Accuracy Rate(%) for 100 Speakers by Proposed SIS  

As a conclusion, fusion method that used in this study has the best accuracy rate in 

speaker identification when the speaker database is composed of 60% true speakers and 

40% imposters. In 25, 50, and 100 speaker databases VQ and GMM give better results 

than ANN and DT. ANN gives the best accuracy rate result with 25 speakers. DT gives 

the best accuracy rate result with 50 speakers.  

We have to notice that there is a difference between the identification rate results and 

accuracy rate results. As explained before, identification rate is focusing on number of 

correctly identified audio samples over the total number of tested audio samples. 

Accuracy rate is a general performance metric and is computed from confusion matrix 

which take the entire true positive and true negative speakers over the total number of 

speakers entered the system (true speaker and imposter).  
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6.1 Research Summary 

Speaker Recognition discipline is a rich area for researches since the mid-1980s. From 

that time until now, rapid development and new technologies have emerged to contribute 

in different fields. Speaker identification technology in particular becomes a necessity in 

smart environments like distance learning, teleconferences, attendance systems, 

personalized dialog systems, dialing machines, police investigations, etc. In this study, 

we are proposing a SIS that uses different techniques to identify any speaker effectively. 

This system can be a lab assistant that help the lecturer or any user to identify who are 

participating in a class or a lab in a separated location. 

The goal of this study is to propose a speaker identification system for an effective 

identification of all registered persons based on their speech. For extracting features 

from the speech signal MFCC’s was used. After that, VQ, GMM, ANN, and DT 

algorithms were applied for feature matching. Then, in order to take advantage of the 

various speaker identification algorithms techniques, the results were fused through 

majority decision method.  
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As explained previously, SIS is composed of feature extraction and feature matching 

modules. These two modules participate in the whole process of SIS, which is composed 

of training and testing phases. Training phase is responsible for building the speaker 

database by training all the speakers participating to the system. In our case, we have 

different organizations of speaker databases: the increasing size of speakers from 10 to 

120 speakers, and six groups having the same size of 25 speakers chosen randomly. The 

testing phase represents the actual work for the system used for speaker identification.  

We noticed that identification rate results are affected by increasing the size of speakers 

databases used. In addition, it is affected by the environment of recorded speech as 

shown from different identification results from groups A, B, C, D, E, and F of 25 

speakers. Overall training and testing speakers in groups with small size achieve better 

identification rate and less misidentification of speakers.  

With the speaker database comprised of 10 to 120 speakers, GMM gives the best 

identification rate results. Fusion method gives better results than VQ, ANN, and DT 

when they are applied separately. From 60 to 120 speaker database, DT algorithm 

provides the worst identification rate.  

In the speaker database of groups A, B, C, D, E, and F with 25 speakers in each group, 

GMM gives the best identification rate results when applied to all groups. Fusion 

method gives better results than VQ, ANN, and DT when they are applied separately. By 

taking the average identification rate from all groups, GMM scores the best and DT 

scores the worst identification rate results. 
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The number of misidentification increases with the increasing size of speakers. This is 

evident when comparing misidentification number between 25 speaker groups and 40 to 

120 speaker databases. ANN algorithm scores the highest misidentification number with 

120 speakers. 

Changing speakers groups of 25, 50, and 100 speaker databases with 40% of untrained 

speakers (imposters) is done for performance evaluation. In this study, we have 

computed TP, TN, FP, and FN to measure precision, recall, and accuracy for VQ, GMM, 

ANN, DT, and fusion. The optimal results of recall were obtained with VQ, GMM, and 

fusion method. The lowest recall value is computed from 50 speaker database with ANN 

algorithm which is recall=0.8333. We have obtained the optimal result of precision in 

group B only with all algorithms methods. The lowest precision value is computed from 

group C with DT algorithm which is precision=0.7778.  

Accuracy rate results show that fusion method is the most accurate procedure for 

identifying true speakers and rejecting imposters. VQ algorithm is the second best in 

accuracy rate results. 

6.2 Limitations 

As shown from simulations, when we depend on a single speaker identification 

algorithm such as VQ or ANN or DT, we are facing lower identification rate results and 

more misidentification number of speakers than fusing the results. To compensate this 

issue we used four different speaker identification techniques to create un-correlations 

between results and get the most benefit from each algorithm by majority rule decision. 
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We suggest that the main reason for the decreasing identification results are the 

increasing number of similar features from different speakers. This is lead to make the 

identification process more difficult and identifies speakers mistakenly. One choice is to 

increase the training time for each speaker to get more unique features. Another way is 

to use more than one feature extraction technique to produce diverse features.  

As we are aiming to build a real time system as a lab assistant, it is better to parallelize 

running the four speaker identification algorithms to produce real time results for fusion. 

This will be more efficient than applying each algorithm separately. However, in this 

study we did not use the parallelism method. This can be done in future work. 

6.3 Conclusion 

The identification of good approaches for the improvement of speech recognition system 

is a difficult task, the results obtained showing that by adding majority decision to fuse 

VQ, GMM, ANN, and DT algorithms the accuracy rate level is improved up to 96% for 

25 and 50 speakers and up to 99% for 100 speakers. 

Identification rate results show that, compared to the other approaches, GMM has the 

best performance. Also dividing a large number of registered speakers into groups for 

training gives more stable and higher identification results. Based on the data obtained, 

the proposed SIS can be used to facilitate lab assistant that is specialized in speaker 

identification. 

6.4 Recommendations for Future Work  

As this study relied on an English language speaker database, the performance of the 

proposed system can be tested on another language such as Arabic. In this phase of 
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work, the SIS goal was to identify speakers by their identification number. We can add 

the gender, age, emotional state and other factors for identification. Speaker 

identification is a part of pattern recognition so we can upgrade the performance by 

adding another biometric for identification such as face, or fingerprint.  

Also using another feature extraction method such as Linear Predictive Coding (LPC), 

Inverted Mel Frequency Cepstrum Coefficients (IMFCCs), etc., can produce different 

results.  

Fusion method can be done depending on various theories and can be applied to two or 

more feature extraction techniques or pattern matching techniques. Speaker corpora can 

be changed or add some factors as clean and noise environment. In addition, another 

improvement can be represented by the identification of a speaker when multiple 

speakers speak simultaneously. Parallelism technique can be applied on several pattern 

matching models to upgrade the performance in real time systems. 
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